Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation
Yingbin GE, Rikka AZUMA, Bethsebah GEKONGE, Alfonso LOPEZ-CORAL, Min XIAO, Gao ZHANG, Xiaowei XU, Luis J. MONTANER, Zhi WEI, Meenhard HERLYN, Tao WANG, Russel E. KAUFMAN
Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation
Tumor-associated macrophages (TAMs) play a critical role in melanoma growth and metastasis. Infiltration of TAMs correlates with the poor prognosis of melanoma. TAMs are differentiated from monocytes in response to the tumor microenvironment cue. However, the mechanism how TAMs adapt to the tumor microenvironment after differentiation from monocytes is not fully understood. In addition, specific identification of TAMs in melanoma is difficult because the expression of the most commonly used macrophage marker, CD68, is also expressed in melanoma cells. In an earlier study, we found by gene microarray analysis that seven members of the metallothionein (MTs) family were upregulated in melanoma-conditioned medium induced macrophages (MCIM-Mф). MTs have been implicated in zinc metabolism and inflammation. In the present study, we confirmed that expression of metallothionein is induced in M-CSF differentiated macrophages (M-CSF/Mф) and MCIM-Mф at both the mRNA and protein levels using real-time PCR, immunofluorescence, and western blot analysis. Furthermore, we demonstrated the presence of metallothionein in melanoma tissues in vivo and that metallothionein was co-localized with TAMs markers, CD68 and CD163. Finally, we demonstrated the induction of the zinc importer gene Zip8 both in M-CSF/Mф and MCIM-Mф. Our study identifies metallothionein as a novel marker for TAMs and suggests that metallothionein might play important roles in macrophage adaptation and function in the tumor microenvironment.
melanoma / macrophages / metallothionein
[1] |
Bernengo M G, Quaglino P, Cappello N, Lisa F, Osella-Abate S, Fierro M T (2000). Macrophage-mediated immunostimulation modulates therapeutic efficacy of interleukin-2 based chemoimmunotherapy in advanced metastatic melanoma patients. Melanoma Res, 10(1): 55-65
Pubmed
|
[2] |
Bröcker E B, Zwadlo G, Holzmann B, Macher E, Sorg C (1988). Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int J Cancer, 41(4): 562-567
CrossRef
Pubmed
Google scholar
|
[3] |
Cassidy M, Loftus B, Whelan A, Sabt B, Hickey D, Henry K, Leader M (1994). KP-1: not a specific marker. Staining of 137 sarcomas, 48 lymphomas, 28 carcinomas, 7 malignant melanomas and 8 cystosarcoma phyllodes. Virchows Arch, 424(6): 635-640
CrossRef
Pubmed
Google scholar
|
[4] |
Colvin R A, Holmes W R, Fontaine C P, Maret W (2010). Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics, 2(5): 306-317
CrossRef
Pubmed
Google scholar
|
[5] |
De S K, McMaster M T, Andrews G K (1990). Endotoxin induction of murine metallothionein gene expression. J Biol Chem, 265(25): 15267-15274
Pubmed
|
[6] |
Deng D, El-Rifai W, Ji J, Zhu B, Trampont P, Li J, Smith M F, Powel S M (2003). Hypermethylation of metallothionein-3 CpG island in gastric carcinoma. Carcinogenesis, 24(1): 25-29
CrossRef
Pubmed
Google scholar
|
[7] |
Duluc D, Delneste Y, Tan F, Moles M P, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood, 110(13): 4319-4330
CrossRef
Pubmed
Google scholar
|
[8] |
Gazzaniga S, Bravo A I, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007). Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol, 127(8): 2031-2041
CrossRef
Pubmed
Google scholar
|
[9] |
Ghoshal K, Majumder S, Jacob S T (2002). Analysis of promoter methylation and its role in silencing metallothionein I gene expression in tumor cells. Methods Enzymol, 353: 476-486
CrossRef
Pubmed
Google scholar
|
[10] |
Glesne D, Vogt S, Maser J, Legnini D, Huberman E (2006). Regulatory properties and cellular redistribution of zinc during macrophage differentiation of human leukemia cells. J Struct Biol, 155(1): 2-11
CrossRef
Pubmed
Google scholar
|
[11] |
Henrique R, Jerónimo C, Hoque M O, Nomoto S, Carvalho A L, Costa V L, Oliveira J, Teixeira M R, Lopes C, Sidransky D (2005). MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol Biomarkers Prev, 14(5): 1274-1278
CrossRef
Pubmed
Google scholar
|
[12] |
Huang Y, de la Chapelle A, Pellegata N S (2003). Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma. Int J Cancer, 104(6): 735-744
CrossRef
Pubmed
Google scholar
|
[13] |
Jensen T O, Schmidt H, Møller H J, Høyer M, Maniecki M B, Sjoegren P, Christensen I J, Steiniche T (2009). Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol, 27(20): 3330-3337
CrossRef
Pubmed
Google scholar
|
[14] |
Joshi B, Ordonez-Ercan D, Dasgupta P, Chellappan S (2005). Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene, 24(13): 2204-2217
CrossRef
Pubmed
Google scholar
|
[15] |
Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro A M, Halaban R, Weissman S M (2009). Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res, 19(8): 1462-1470
CrossRef
Pubmed
Google scholar
|
[16] |
Levadoux-Martin M, Hesketh J E, Beattie J H, Wallace H M (2001). Influence of metallothionein-1 localization on its function. Biochem J, 355(Pt 2): 473-479
CrossRef
Pubmed
Google scholar
|
[17] |
Lewis C E, Pollard J W (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res, 66(2): 605-612
CrossRef
Pubmed
Google scholar
|
[18] |
Mäkitie T, Summanen P, Tarkkanen A, Kivelä T (2001). Tumor-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci, 42(7): 1414-1421
Pubmed
|
[19] |
Mantovani A, Sica A (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22(2): 231-237
CrossRef
Pubmed
Google scholar
|
[20] |
Murphy B J, Andrews G K, Bittel D, Discher D J, McCue J, Green C J, Yanovsky M, Giaccia A, Sutherland R M, Laderoute K R, Webster K A (1999). Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res, 59(6): 1315-1322
Pubmed
|
[21] |
Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H (1999). Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med, 190(2): 293-298
CrossRef
Pubmed
Google scholar
|
[22] |
Pernick N L, DaSilva M, Gangi M D, Crissman J, Adsay V (1999). “Histiocytic markers” in melanoma. Mod Pathol, 12(11): 1072-1077
Pubmed
|
[23] |
Pollard J W (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4(1): 71-78
CrossRef
Pubmed
Google scholar
|
[24] |
Qian B Z, Pollard J W (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1): 39-51
CrossRef
Pubmed
Google scholar
|
[25] |
Raleigh J A, Chou S C, Calkins-Adams D P, Ballenger C A, Novotny D B, Varia M A (2000). A clinical study of hypoxia and metallothionein protein expression in squamous cell carcinomas. Clin Cancer Res, 6(3): 855-862
Pubmed
|
[26] |
Raleigh J A, Chou S C, Tables L, Suchindran S, Varia M A, Horsman M R (1998). Relationship of hypoxia to metallothionein expression in murine tumors. Int J Radiat Oncol Biol Phys, 42(4): 727-730
CrossRef
Pubmed
Google scholar
|
[27] |
Raymond A D, Gekonge B, Giri M S, Hancock A, Papasavvas E, Chehimi J, Kossenkov A V, Nicols C, Yousef M, Mounzer K, Shull J, Kostman J, Showe L, Montaner L J (2010). Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J Leukoc Biol, 88(3): 589-596
CrossRef
Pubmed
Google scholar
|
[28] |
Roca H, Varsos Z S, Sud S, Craig M J, Ying C, Pienta K J (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem, 284(49): 34342-34354
CrossRef
Pubmed
Google scholar
|
[29] |
Shah I A, Gani O S, Wheler L (1997). Comparative immunoreactivity of CD-68 and HMB-45 in malignant melanoma, neural tumors and nevi. Pathol Res Pract, 193(7): 497-502
CrossRef
Pubmed
Google scholar
|
[30] |
Shankar A H, Prasad A S (1998). Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr, 68(2 Suppl): 447S-463S
Pubmed
|
[31] |
Sica A, Rubino L, Mancino A, Larghi P, Porta C, Rimoldi M, Solinas G, Locati M, Allavena P, Mantovani A (2007). Targeting tumour-associated macrophages. Expert Opin Ther Targets, 11(9): 1219-1229
CrossRef
Pubmed
Google scholar
|
[32] |
Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol, 185(1): 642-652
CrossRef
Pubmed
Google scholar
|
[33] |
Sugiura T, Kuroda E, Yamashita U (2004). Dysfunction of macrophages in metallothionein-knock out mice. J UOEH, 26(2): 193-205
Pubmed
|
[34] |
Tse K Y, Liu V W, Chan D W, Chiu P M, Tam K F, Chan K K, Liao X Y, Cheung A N, Ngan H Y (2009). Epigenetic alteration of the metallothionein 1E gene in human endometrial carcinomas. Tumour Biol, 30(2): 93-99
CrossRef
Pubmed
Google scholar
|
[35] |
Varney M L, Johansson S L, Singh R K (2005). Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res, 15(5): 417-425
CrossRef
Pubmed
Google scholar
|
[36] |
Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher Iii F J (2012). Melanoma-Derived Conditioned Media Efficiently Induce the Differentiation of Monocytes to Macrophages that Display a Highly Invasive Gene Signature. Pigment Cell Melanoma Res, Online Available <month>April</month><day>12</day>, 2012
|
[37] |
Weinlich G (2009). Metallothionein-overexpression as a prognostic marker in melanoma. G Ital Dermatol Venereol, 144(1): 27-38
Pubmed
|
[38] |
Weinlich G, Bitterlich W, Mayr V, Fritsch P O, Zelger B (2003). Metallothionein-overexpression as a prognostic factor for progression and survival in melanoma. A prospective study on 520 patients. Br J Dermatol, 149(3): 535-541
CrossRef
Pubmed
Google scholar
|
[39] |
Weinlich G, Eisendle K, Hassler E, Baltaci M, Fritsch P O, Zelger B (2006). Metallothionein- overexpression as a highly significant prognostic factor in melanoma: a prospective study on 1270 patients. Br J Cancer, 94(6): 835-841
CrossRef
Pubmed
Google scholar
|
[40] |
Weinlich G, Topar G, Eisendle K, Fritsch P O, Zelger B (2007). Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanoma. J Eur Acad Dermatol Venereol, 21(5): 669-677
Pubmed
|
[41] |
Weinlich G, Zelger B (2007). Metallothionein overexpression, a highly significant prognostic factor in thin melanoma. Histopathology, 51(2): 280-283
CrossRef
Pubmed
Google scholar
|
[42] |
Yamasaki M, Nomura T, Sato F, Mimata H (2007a). Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncol Rep, 18(5): 1145-1153
Pubmed
|
[43] |
Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007b). Zinc is a novel intracellular second messenger. J Cell Biol, 177(4): 637-645
CrossRef
Pubmed
Google scholar
|
[44] |
Zaidi M R, Davis S, Noonan F P, Graff-Cherry C, Hawley T S, Walker R L, Feigenbaum L, Fuchs E, Lyakh L, Young H A, Hornyak T J, Arnheiter H, Trinchieri G, Meltzer P S, De Fabo E C, Merlino G (2011). Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature, 469(7331): 548-553
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |