REVIEW

ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development

  • Ienglam LEI 1,2,3 ,
  • Mai Har SHAM 3 ,
  • Zhong WANG , 1,2
Expand
  • 1. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
  • 2. Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
  • 3. Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Received date: 09 Oct 2011

Accepted date: 25 Oct 2011

Published date: 01 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease. To realize the full potential of CPCs for therapeutic purposes, it is essential to understand the genetic and epigenetic mechanisms guiding CPC differentiation into cardiomyocytes, smooth muscle, or endothelial cells. ATP-dependent chromatin remodelers mediate one critical epigenetic mechanism. These large multiprotein complexes open up chromatin to modulate transcription factor access to DNA. SWI/SNF, one of the major types of chromatin remodelers, plays a key role in various aspects of development (de la Serna et al., 2006; Wu et al., 2009), including heart development and disease (Lickert et al., 2004; Wang et al., 2004; Huang et al., 2008; Stankunas et al., 2008; Hang et al., 2010). In this review, we describe the specific function of various SWI/SNF components in cardiogenesis and cardiac progenitor cell (CPC) self-renewal and differentiation. We envision that a detailed understanding of the SWI/SNF in heart development and CPC formation and differentiation will generate novel insights into epigenetic mechanisms that govern CPC differentiation and may have significant implications in understanding and treating heart disease.

Cite this article

Ienglam LEI , Mai Har SHAM , Zhong WANG . ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development[J]. Frontiers in Biology, 2012 , 7(3) : 202 -211 . DOI: 10.1007/s11515-012-1189-z

1
Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers E N (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development, 129(19): 4613–4625

PMID

2
Arceci R J, King A A, Simon M C, Orkin S H, Wilson D B (1993). Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol, 13(4): 2235–2246

PMID

3
Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y Q, Helms J, Chang C P, Zhao Y M, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463, 958–962

4
Bannister A J, Zegerman P, Partridge J F, Miska E A, Thomas J O, Allshire R C, Kouzarides T (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410(6824): 120–124

DOI PMID

5
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412

DOI PMID

6
Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J 3rd, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120(2): 169–181

DOI PMID

7
Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 5(2): 158–163

DOI PMID

8
Brand T (2003). Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol, 258(1): 1–19

DOI PMID

9
Bruneau B G (2010). Chromatin remodeling in heart development. Curr Opin Genet Dev, 20(5):505–11

10
Bruneau B G, Logan M, Davis N, Levi T, Tabin C J, Seidman J G, Seidman C E (1999). Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol, 211(1): 100–108

DOI PMID

11
Buckingham M, Meilhac S, Zaffran S (2005). Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet, 6(11): 826–837

DOI PMID

12
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell, 6(6): 1287–1295

DOI PMID

13
Cai C L, Liang X, Shi Y, Chu P H, Pfaff S L, Chen J, Evans S (2003a). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6): 877–889

DOI PMID

14
Cai S, Han H, Kohwi-Shigematsu T (2003b). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genetics, 34: 42–51

15
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider M D, Chien K R, Conway S J, Yoder M C, Haneline L S, Franco D, Shou W (2004). BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development, 131(9): 2219–2231

DOI PMID

16
Chi T H, Wan M, Lee P P, Akashi K, Metzger D, Chambon P, Wilson C B, Crabtree G R (2003). Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity, 19(2): 169–182

DOI PMID

17
Christoffels V M, Hoogaars W M, Tessari A, Clout D E, Moorman A F, Campione M (2004). T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn, 229(4): 763–770

DOI PMID

18
Cirillo L A, Lin F R, Cuesta I, Friedman D, Jarnik M, Zaret K S (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell, 9(2): 279–289

DOI PMID

19
de la Serna I L, Ohkawa Y, Imbalzano A N (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet, 7(6): 461–473

DOI PMID

20
Dodou E, Verzi M P, Anderson J P, Xu S M, Black B L (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development, 131(16): 3931–3942

DOI PMID

21
Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2): 172–183

DOI PMID

22
Francastel C, Schübeler D, Martin D I, Groudine M (2000). Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol, 1(2): 137–143

DOI PMID

23
Frank D U, Fotheringham L K, Brewer J A, Muglia L J, Tristani-Firouzi M, Capecchi M R, Moon A M (2002). An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development, 129(19): 4591–4603

PMID

24
Gao X, Tate P, Hu P, Tjian R, Skarnes W C, Wang Z (2008). ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA, 105(18): 6656–6661

DOI PMID

25
Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature, 378:390–394

26
Gottlieb P D, Pierce S A, Sims III R J, Yamagishi H, Weihe E K, Harriss J V, Maika S D, Kuziel W A, King H L, Olson E N, Nakagawa O, Srivastava D (2002). Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genetics 31: 25–32

27
Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt A N, Zang H, Mukouyama Y S, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Pérez-Pomares J M, de la Pompa J L (2007). Notch signaling is essential for ventricular chamber development. Dev Cell, 12(3): 415–429

DOI PMID

28
Habets P E, Moorman A F, Clout D E, van Roon M A, Lingbeek M, van Lohuizen M, Campione M, Christoffels V M (2002). Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev, 16(10): 1234–1246

DOI PMID

29
Han P, Hang C T, Yang J, Chang C P (2011). Chromatin remodeling in cardiovascular development and physiology. Circ Res, 108(3): 378–396

DOI PMID

30
Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466: 62–67

DOI

31
Harrelson Z, Kelly R G, Goldin S N, Gibson-Brown J J, Bollag R J, Silver L M, Papaioannou V E (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development, 131(20): 5041–5052

DOI PMID

32
Hassan A H, Prochasson P, Neely K E, Galasinski S C, Chandy M, Carrozza M J, Workman J L (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell, 111(3): 369–379

DOI PMID

33
Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics, 28: 276–280

34
Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004). Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development, 131(21): 5491–5502

DOI PMID

35
Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z (2008). Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol, 319(2): 258–266

DOI PMID

36
Jiang C, Pugh B F (2009). Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet, 10(3): 161–172

DOI PMID

37
Kelly R G, Brown N A, Buckingham M E (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell, 1(3): 435–440

DOI PMID

38
Kelly R G, Buckingham M E (2002). The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet, 18(4): 210–216

DOI PMID

39
Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003). The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell, 113(7): 905–917

DOI PMID

40
Konev A Y, Tribus M, Park S Y, Podhraski V, Lim C Y, Emelyanov A V, Vershilova E, Pirrotta V, Kadonaga J T, Lusser A, Fyodorov D V (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science, 317(5841): 1087–1090

DOI PMID

41
Kraus F, Haenig B, Kispert A (2001). Cloning and expression analysis of the mouse T-box gene tbx20. Mech Dev, 100(1): 87–91

DOI PMID

42
Kuramochi Y, Guo X, Sawyer D B (2006). Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol, 41(2): 228–235

DOI PMID

43
Kwon H, Imbalzano A, Khavari P, Kingston R, Green M (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489): 477–481

44
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410(6824): 116–120

DOI PMID

45
Lee J H, Hart S R, Skalnik D G (2004). Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis, 38(1): 32–38

DOI PMID

46
Lee K F, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 23;378(6555):394–398

47
Lessard J, Wu J I, Ranish J A, Wan M, Winslow M M, Staahl B T, Wu H, Aebersold R, Graef I A, Crabtree G R (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron, 55(2): 201–215

DOI PMID

48
Liberatore C M, Searcy-Schrick R D, Yutzey K E (2000). Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol, 223(1): 169–180

DOI PMID

49
Lickert H, Takeuchi J K, Von Both I, Walls J R, McAuliffe F, Adamson S L, Henkelman R M, Wrana J L, Rossant J, Bruneau B G (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 432(7013): 107–112

DOI PMID

50
Lodén M, van Steensel B (2005). Whole-genome views of chromatin structure. Chromosome Res, 13(3): 289–298

DOI PMID

51
Lomvardas S, Thanos D (2001). Nucleosome sliding via TBP DNA binding in vivo. Cell, 106(6): 685–696

DOI PMID

52
Lou X, Deshwar A R, Crump J G, Scott I C (2011). Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development, 138(15): 3113–3123

DOI PMID

53
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260

DOI PMID

54
Maeda J, Yamagishi H, McAnally J, Yamagishi C, Srivastava D (2006). Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn, 235(3): 701–710

DOI PMID

55
Martens J H, O’Sullivan R J, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005). The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J, 24(4): 800–812

DOI PMID

56
Meyer D, Birchmeier C (1995). Multiple essential functions of neuregulin in development. Nature 378: 386–390

57
Mizuguchi G, Shen X, Landry J, Wu W H, Sen S, Wu C (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science, 303(5656): 343–348

DOI PMID

58
Moorman A, Lamers W (1999). Development of the conduction system of the vertebrate heart. Heart development, 151: 195–207

59
Moorman A F, Christoffels V M (2003). Cardiac chamber formation: development, genes, and evolution. Physiol Rev, 83(4): 1223–1267

PMID

60
Morrison A J, Shen X (2009). Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol, 10(6): 373–384

DOI PMID

61
Nie Z, Xue Y, Yang D, Zhou S, Deroo B J, Archer T K, Wang W (2000). A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol, 20(23): 8879–8888

DOI PMID

62
Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996). Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol, 16(11): 6083–6095

PMID

63
Park E J, Ogden L A, Talbot A, Evans S, Cai C L, Black B L, Frank D U, Moon A M (2006). Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development, 133(12): 2419–2433

DOI PMID

64
Phan D, Rasmussen T L, Nakagawa O, McAnally J, Gottlieb P D, Tucker P W, Richardson J A, Bassel-Duby R, Olson E N (2005). BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development, 132(11): 2669–2678

DOI PMID

65
Polach K J, Widom J (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol, 258(5): 800–812

DOI PMID

66
Poot R A, Bozhenok L, van den Berg D L, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz P D (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol, 6(12): 1236–1244

DOI PMID

67
Saha A, Wittmeyer J, Cairns B R (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol, 7(6): 437–447

DOI PMID

68
Schneider M D, Gaussin V, Lyons K M (2003). Tempting fate: BMP signals for cardiac morphogenesis. Cytokine Growth Factor Rev, 14(1): 1–4

DOI PMID

69
Simone C, Forcales S V, Hill D A, Imbalzano A N, Latella L, Puri P L (2004). p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genetics 36: 738–743

70
Singh M K, Christoffels V M, Dias J M, Trowe M O, Petry M, Schuster-Gossler K, Bürger A, Ericson J, Kispert A (2005). Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development, 132(12): 2697–2707

DOI PMID

71
Stankunas K, Hang C T, Tsun Z Y, Chen H, Lee N V, Wu J I, Shang C, Bayle J H, Shou W, Iruela-Arispe M L, Chang C P (2008). Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell, 14(2): 298–311

DOI PMID

72
Stennard F A, Costa M W, Lai D, Biben C, Furtado M B, Solloway M J, McCulley D J, Leimena C, Preis J I, Dunwoodie S L, Elliott D E, Prall O W, Black B L, Fatkin D, Harvey R P (2005). Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development, 132(10): 2451–2462

DOI PMID

73
Takeuchi J K, Bruneau B G (2009). Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature, 459(7247): 708–711

DOI PMID

74
von Both I, Silvestri C, Erdemir T, Lickert H, Walls J R, Henkelman R M, Rossant J, Harvey R P, Attisano L, Wrana J L (2004). Foxh1 is essential for development of the anterior heart field. Dev Cell, 7(3): 331–345

DOI PMID

75
Wang W, Côté J, Xue Y, Zhou S, Khavari P A, Biggar S R, Muchardt C, Kalpana G V, Goff S P, Yaniv M, Workman J L, Crabtree G R (1996a). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J, 15(19): 5370–5382

PMID

76
Wang W, Xue Y, Zhou S, Kuo A, Cairns B R, Crabtree G R (1996b). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev, 10(17): 2117–2130

DOI PMID

77
Wang Z, Zhai W, Richardson J A, Olson E N, Meneses J J, Firpo M T, Kang C, Skarnes W C, Tjian R (2004). Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev, 18(24): 3106–3116

DOI PMID

78
Wu J I, Lessard J, Crabtree G R (2009). Understanding the words of chromatin regulation. Cell, 136(2): 200–206

DOI PMID

79
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94–108

DOI PMID

80
Xue Y, Canman J C, Lee C S, Nie Z, Yang D, Moreno G T, Young M K, Salmon E D, Wang W (2000). The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA, 97(24): 13015–13020

DOI PMID

81
Yan Z, Cui K, Murray D M, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W (2005). PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev, 19(14): 1662–1667

DOI PMID

82
Yoshimura K, Kitagawa H, Fujiki R, Tanabe M, Takezawa S, Takada I, Yamaoka I, Yonezawa M, Kondo T, Furutani Y, Yagi H, Yoshinaga S, Masuda T, Fukuda T, Yamamoto Y, Ebihara K, Li D Y, Matsuoka R, Takeuchi J K, Matsumoto T, Kato S (2009). Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci USA, 106(23): 9280–9285

DOI PMID

83
Zhao K, Wang W, Rando O J, Xue Y, Swiderek K, Kuo A, Crabtree G R (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell, 95(5): 625–636

DOI PMID

Options
Outlines

/