ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development

Ienglam LEI, Mai Har SHAM, Zhong WANG

Front. Biol. ›› 2012, Vol. 7 ›› Issue (3) : 202-211. DOI: 10.1007/s11515-012-1189-z
REVIEW

ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development

Author information +
History +

Abstract

The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease. To realize the full potential of CPCs for therapeutic purposes, it is essential to understand the genetic and epigenetic mechanisms guiding CPC differentiation into cardiomyocytes, smooth muscle, or endothelial cells. ATP-dependent chromatin remodelers mediate one critical epigenetic mechanism. These large multiprotein complexes open up chromatin to modulate transcription factor access to DNA. SWI/SNF, one of the major types of chromatin remodelers, plays a key role in various aspects of development (de la Serna et al., 2006; Wu et al., 2009), including heart development and disease (Lickert et al., 2004; Wang et al., 2004; Huang et al., 2008; Stankunas et al., 2008; Hang et al., 2010). In this review, we describe the specific function of various SWI/SNF components in cardiogenesis and cardiac progenitor cell (CPC) self-renewal and differentiation. We envision that a detailed understanding of the SWI/SNF in heart development and CPC formation and differentiation will generate novel insights into epigenetic mechanisms that govern CPC differentiation and may have significant implications in understanding and treating heart disease.

Keywords

ATP-dependent chromatin remodeling / SWI/SNF / cardiogenesis and cardiac progenitor cell

Cite this article

Download citation ▾
Ienglam LEI, Mai Har SHAM, Zhong WANG. ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development. Front Biol, 2012, 7(3): 202‒211 https://doi.org/10.1007/s11515-012-1189-z

References

[1]
Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers E N (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development, 129(19): 4613–4625
Pubmed
[2]
Arceci R J, King A A, Simon M C, Orkin S H, Wilson D B (1993). Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol, 13(4): 2235–2246
Pubmed
[3]
Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y Q, Helms J, Chang C P, Zhao Y M, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463, 958–962
[4]
Bannister A J, Zegerman P, Partridge J F, Miska E A, Thomas J O, Allshire R C, Kouzarides T (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410(6824): 120–124
CrossRef Pubmed Google scholar
[5]
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412
CrossRef Pubmed Google scholar
[6]
Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J 3rd, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120(2): 169–181
CrossRef Pubmed Google scholar
[7]
Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 5(2): 158–163
CrossRef Pubmed Google scholar
[8]
Brand T (2003). Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol, 258(1): 1–19
CrossRef Pubmed Google scholar
[9]
Bruneau B G (2010). Chromatin remodeling in heart development. Curr Opin Genet Dev, 20(5):505–11
[10]
Bruneau B G, Logan M, Davis N, Levi T, Tabin C J, Seidman J G, Seidman C E (1999). Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol, 211(1): 100–108
CrossRef Pubmed Google scholar
[11]
Buckingham M, Meilhac S, Zaffran S (2005). Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet, 6(11): 826–837
CrossRef Pubmed Google scholar
[12]
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell, 6(6): 1287–1295
CrossRef Pubmed Google scholar
[13]
Cai C L, Liang X, Shi Y, Chu P H, Pfaff S L, Chen J, Evans S (2003a). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6): 877–889
CrossRef Pubmed Google scholar
[14]
Cai S, Han H, Kohwi-Shigematsu T (2003b). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genetics, 34: 42–51
[15]
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider M D, Chien K R, Conway S J, Yoder M C, Haneline L S, Franco D, Shou W (2004). BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development, 131(9): 2219–2231
CrossRef Pubmed Google scholar
[16]
Chi T H, Wan M, Lee P P, Akashi K, Metzger D, Chambon P, Wilson C B, Crabtree G R (2003). Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity, 19(2): 169–182
CrossRef Pubmed Google scholar
[17]
Christoffels V M, Hoogaars W M, Tessari A, Clout D E, Moorman A F, Campione M (2004). T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn, 229(4): 763–770
CrossRef Pubmed Google scholar
[18]
Cirillo L A, Lin F R, Cuesta I, Friedman D, Jarnik M, Zaret K S (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell, 9(2): 279–289
CrossRef Pubmed Google scholar
[19]
de la Serna I L, Ohkawa Y, Imbalzano A N (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet, 7(6): 461–473
CrossRef Pubmed Google scholar
[20]
Dodou E, Verzi M P, Anderson J P, Xu S M, Black B L (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development, 131(16): 3931–3942
CrossRef Pubmed Google scholar
[21]
Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2): 172–183
CrossRef Pubmed Google scholar
[22]
Francastel C, Schübeler D, Martin D I, Groudine M (2000). Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol, 1(2): 137–143
CrossRef Pubmed Google scholar
[23]
Frank D U, Fotheringham L K, Brewer J A, Muglia L J, Tristani-Firouzi M, Capecchi M R, Moon A M (2002). An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development, 129(19): 4591–4603
Pubmed
[24]
Gao X, Tate P, Hu P, Tjian R, Skarnes W C, Wang Z (2008). ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA, 105(18): 6656–6661
CrossRef Pubmed Google scholar
[25]
Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature, 378:390–394
[26]
Gottlieb P D, Pierce S A, Sims III R J, Yamagishi H, Weihe E K, Harriss J V, Maika S D, Kuziel W A, King H L, Olson E N, Nakagawa O, Srivastava D (2002). Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genetics 31: 25–32
[27]
Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt A N, Zang H, Mukouyama Y S, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Pérez-Pomares J M, de la Pompa J L (2007). Notch signaling is essential for ventricular chamber development. Dev Cell, 12(3): 415–429
CrossRef Pubmed Google scholar
[28]
Habets P E, Moorman A F, Clout D E, van Roon M A, Lingbeek M, van Lohuizen M, Campione M, Christoffels V M (2002). Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev, 16(10): 1234–1246
CrossRef Pubmed Google scholar
[29]
Han P, Hang C T, Yang J, Chang C P (2011). Chromatin remodeling in cardiovascular development and physiology. Circ Res, 108(3): 378–396
CrossRef Pubmed Google scholar
[30]
Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466: 62–67
CrossRef Google scholar
[31]
Harrelson Z, Kelly R G, Goldin S N, Gibson-Brown J J, Bollag R J, Silver L M, Papaioannou V E (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development, 131(20): 5041–5052
CrossRef Pubmed Google scholar
[32]
Hassan A H, Prochasson P, Neely K E, Galasinski S C, Chandy M, Carrozza M J, Workman J L (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell, 111(3): 369–379
CrossRef Pubmed Google scholar
[33]
Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics, 28: 276–280
[34]
Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004). Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development, 131(21): 5491–5502
CrossRef Pubmed Google scholar
[35]
Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z (2008). Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol, 319(2): 258–266
CrossRef Pubmed Google scholar
[36]
Jiang C, Pugh B F (2009). Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet, 10(3): 161–172
CrossRef Pubmed Google scholar
[37]
Kelly R G, Brown N A, Buckingham M E (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell, 1(3): 435–440
CrossRef Pubmed Google scholar
[38]
Kelly R G, Buckingham M E (2002). The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet, 18(4): 210–216
CrossRef Pubmed Google scholar
[39]
Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003). The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell, 113(7): 905–917
CrossRef Pubmed Google scholar
[40]
Konev A Y, Tribus M, Park S Y, Podhraski V, Lim C Y, Emelyanov A V, Vershilova E, Pirrotta V, Kadonaga J T, Lusser A, Fyodorov D V (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science, 317(5841): 1087–1090
CrossRef Pubmed Google scholar
[41]
Kraus F, Haenig B, Kispert A (2001). Cloning and expression analysis of the mouse T-box gene tbx20. Mech Dev, 100(1): 87–91
CrossRef Pubmed Google scholar
[42]
Kuramochi Y, Guo X, Sawyer D B (2006). Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol, 41(2): 228–235
CrossRef Pubmed Google scholar
[43]
Kwon H, Imbalzano A, Khavari P, Kingston R, Green M (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489): 477–481
[44]
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410(6824): 116–120
CrossRef Pubmed Google scholar
[45]
Lee J H, Hart S R, Skalnik D G (2004). Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis, 38(1): 32–38
CrossRef Pubmed Google scholar
[46]
Lee K F, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 23;378(6555):394–398
[47]
Lessard J, Wu J I, Ranish J A, Wan M, Winslow M M, Staahl B T, Wu H, Aebersold R, Graef I A, Crabtree G R (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron, 55(2): 201–215
CrossRef Pubmed Google scholar
[48]
Liberatore C M, Searcy-Schrick R D, Yutzey K E (2000). Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol, 223(1): 169–180
CrossRef Pubmed Google scholar
[49]
Lickert H, Takeuchi J K, Von Both I, Walls J R, McAuliffe F, Adamson S L, Henkelman R M, Wrana J L, Rossant J, Bruneau B G (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 432(7013): 107–112
CrossRef Pubmed Google scholar
[50]
Lodén M, van Steensel B (2005). Whole-genome views of chromatin structure. Chromosome Res, 13(3): 289–298
CrossRef Pubmed Google scholar
[51]
Lomvardas S, Thanos D (2001). Nucleosome sliding via TBP DNA binding in vivo. Cell, 106(6): 685–696
CrossRef Pubmed Google scholar
[52]
Lou X, Deshwar A R, Crump J G, Scott I C (2011). Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development, 138(15): 3113–3123
CrossRef Pubmed Google scholar
[53]
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
CrossRef Pubmed Google scholar
[54]
Maeda J, Yamagishi H, McAnally J, Yamagishi C, Srivastava D (2006). Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn, 235(3): 701–710
CrossRef Pubmed Google scholar
[55]
Martens J H, O’Sullivan R J, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005). The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J, 24(4): 800–812
CrossRef Pubmed Google scholar
[56]
Meyer D, Birchmeier C (1995). Multiple essential functions of neuregulin in development. Nature 378: 386–390
[57]
Mizuguchi G, Shen X, Landry J, Wu W H, Sen S, Wu C (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science, 303(5656): 343–348
CrossRef Pubmed Google scholar
[58]
Moorman A, Lamers W (1999). Development of the conduction system of the vertebrate heart. Heart development, 151: 195–207
[59]
Moorman A F, Christoffels V M (2003). Cardiac chamber formation: development, genes, and evolution. Physiol Rev, 83(4): 1223–1267
Pubmed
[60]
Morrison A J, Shen X (2009). Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol, 10(6): 373–384
CrossRef Pubmed Google scholar
[61]
Nie Z, Xue Y, Yang D, Zhou S, Deroo B J, Archer T K, Wang W (2000). A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol, 20(23): 8879–8888
CrossRef Pubmed Google scholar
[62]
Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996). Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol, 16(11): 6083–6095
Pubmed
[63]
Park E J, Ogden L A, Talbot A, Evans S, Cai C L, Black B L, Frank D U, Moon A M (2006). Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development, 133(12): 2419–2433
CrossRef Pubmed Google scholar
[64]
Phan D, Rasmussen T L, Nakagawa O, McAnally J, Gottlieb P D, Tucker P W, Richardson J A, Bassel-Duby R, Olson E N (2005). BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development, 132(11): 2669–2678
CrossRef Pubmed Google scholar
[65]
Polach K J, Widom J (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol, 258(5): 800–812
CrossRef Pubmed Google scholar
[66]
Poot R A, Bozhenok L, van den Berg D L, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz P D (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol, 6(12): 1236–1244
CrossRef Pubmed Google scholar
[67]
Saha A, Wittmeyer J, Cairns B R (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol, 7(6): 437–447
CrossRef Pubmed Google scholar
[68]
Schneider M D, Gaussin V, Lyons K M (2003). Tempting fate: BMP signals for cardiac morphogenesis. Cytokine Growth Factor Rev, 14(1): 1–4
CrossRef Pubmed Google scholar
[69]
Simone C, Forcales S V, Hill D A, Imbalzano A N, Latella L, Puri P L (2004). p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genetics 36: 738–743
[70]
Singh M K, Christoffels V M, Dias J M, Trowe M O, Petry M, Schuster-Gossler K, Bürger A, Ericson J, Kispert A (2005). Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development, 132(12): 2697–2707
CrossRef Pubmed Google scholar
[71]
Stankunas K, Hang C T, Tsun Z Y, Chen H, Lee N V, Wu J I, Shang C, Bayle J H, Shou W, Iruela-Arispe M L, Chang C P (2008). Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell, 14(2): 298–311
CrossRef Pubmed Google scholar
[72]
Stennard F A, Costa M W, Lai D, Biben C, Furtado M B, Solloway M J, McCulley D J, Leimena C, Preis J I, Dunwoodie S L, Elliott D E, Prall O W, Black B L, Fatkin D, Harvey R P (2005). Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development, 132(10): 2451–2462
CrossRef Pubmed Google scholar
[73]
Takeuchi J K, Bruneau B G (2009). Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature, 459(7247): 708–711
CrossRef Pubmed Google scholar
[74]
von Both I, Silvestri C, Erdemir T, Lickert H, Walls J R, Henkelman R M, Rossant J, Harvey R P, Attisano L, Wrana J L (2004). Foxh1 is essential for development of the anterior heart field. Dev Cell, 7(3): 331–345
CrossRef Pubmed Google scholar
[75]
Wang W, Côté J, Xue Y, Zhou S, Khavari P A, Biggar S R, Muchardt C, Kalpana G V, Goff S P, Yaniv M, Workman J L, Crabtree G R (1996a). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J, 15(19): 5370–5382
Pubmed
[76]
Wang W, Xue Y, Zhou S, Kuo A, Cairns B R, Crabtree G R (1996b). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev, 10(17): 2117–2130
CrossRef Pubmed Google scholar
[77]
Wang Z, Zhai W, Richardson J A, Olson E N, Meneses J J, Firpo M T, Kang C, Skarnes W C, Tjian R (2004). Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev, 18(24): 3106–3116
CrossRef Pubmed Google scholar
[78]
Wu J I, Lessard J, Crabtree G R (2009). Understanding the words of chromatin regulation. Cell, 136(2): 200–206
CrossRef Pubmed Google scholar
[79]
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94–108
CrossRef Pubmed Google scholar
[80]
Xue Y, Canman J C, Lee C S, Nie Z, Yang D, Moreno G T, Young M K, Salmon E D, Wang W (2000). The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA, 97(24): 13015–13020
CrossRef Pubmed Google scholar
[81]
Yan Z, Cui K, Murray D M, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W (2005). PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev, 19(14): 1662–1667
CrossRef Pubmed Google scholar
[82]
Yoshimura K, Kitagawa H, Fujiki R, Tanabe M, Takezawa S, Takada I, Yamaoka I, Yonezawa M, Kondo T, Furutani Y, Yagi H, Yoshinaga S, Masuda T, Fukuda T, Yamamoto Y, Ebihara K, Li D Y, Matsuoka R, Takeuchi J K, Matsumoto T, Kato S (2009). Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci USA, 106(23): 9280–9285
CrossRef Pubmed Google scholar
[83]
Zhao K, Wang W, Rando O J, Xue Y, Swiderek K, Kuo A, Crabtree G R (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell, 95(5): 625–636
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Accesses

Citations

Detail

Sections
Recommended

/