Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders
Received date: 10 Feb 2012
Accepted date: 08 Mar 2012
Published date: 01 Jun 2012
Copyright
Cellular reprogramming allows for the de novo generation of human neurons and glial cells from patients with neurological and psychiatric disorders. Crucially, this technology preserves the genome of the donor individual and thus provides a unique opportunity for systematic investigation of genetic influences on neuronal pathophysiology. Although direct reprogramming of adult somatic cells to neurons is now possible, the majority of recent studies have used induced pluripotent stem cells (iPSCs) derived from patient fibroblasts to generate neural progenitors that can be differentiated to specific neural cell types. Investigations of monogenic diseases have established proof-of-principle for many aspects of cellular disease modeling, including targeted differentiation of neuronal populations and rescue of phenotypes in patient iPSC lines. Refinement of protocols to allow for efficient generation of iPSC lines from large patient cohorts may reveal common functional pathology and genetic interactions in diseases with a polygenic basis. We review several recent studies that illustrate the utility of iPSC-based cellular models of neurodevelopmental and neurodegenerative disorders to identify novel phenotypes and therapeutic approaches.
Key words: reprogramming; iPSCs; neurodevelopment; neurodegeneration
Kimberly M. CHRISTIAN , Hongjun SONG , Guo-li MING . Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Frontiers in Biology, 2012 , 7(3) : 179 -188 . DOI: 10.1007/s11515-012-1216-0
1 |
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton S A, Ding S (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9(2): 113-118
|
2 |
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185-188
|
3 |
Anderson S L, Qiu J, Rubin B Y (2003a). EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun, 310(2): 627-633
|
4 |
Anderson S L, Qiu J, Rubin B Y (2003b). Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun, 306(1): 303-309
|
5 |
Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith Z D, Ziller M, Croft G F, Amoroso M W, Oakley D H, Gnirke A, Eggan K, Meissner A (2011). Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell, 144(3): 439-452
|
6 |
Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279-286
|
7 |
Brennand K J, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F H (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346): 221-225
|
8 |
Caiazzo M, Dell’Anno M T, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova T D, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov R R, Gustincich S, Dityatev A, Broccoli V (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359): 224-227
|
9 |
Chambers S M, Studer L (2011). Cell fate plug and play: direct reprogramming and induced pluripotency. Cell, 145(6): 827-830
|
10 |
Cheung A Y, Horvath L M, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011). Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet, 20(11): 2103-2115
|
11 |
Chiang C H, Su Y, Wen Z, Yoritomo N, Ross C A, Margolis R L, Song H, Ming G L (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry, 16(4): 358-360
|
12 |
Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146-1158
|
13 |
Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE, 7(1): e29597
|
14 |
Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157-14162
|
15 |
Gore A, Li Z, Fung H L, Young J E, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel M A, Kiskinis E, Lee J H, Loh Y H, Manos P D, Montserrat N, Panopoulos A D, Ruiz S, Wilbert M L, Yu J, Kirkness E F, Izpisua Belmonte J C, Rossi D J, Thomson J A, Eggan K, Daley G Q, Goldstein L S, Zhang K (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature, 471(7336): 63-67
|
16 |
Hansen D V, Rubenstein J L, Kriegstein A R (2011). Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron, 70(4): 645-660
|
17 |
Harrison P J, Weinberger D R (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry, 10:40-68
|
18 |
Herbert M R (2010). Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol, 23(2): 103-110
|
19 |
Hussein S M, Batada N N, Vuoristo S, Ching R W, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones D P, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011). Copy number variation and selection during reprogramming to pluripotency. Nature, 471(7336): 58-62
|
20 |
Israel M A, Yuan S H, Bardy C, Reyna S M, Mu Y, Herrera C, Hefferan M P, Van Gorp S, Nazor K L, Boscolo F S, Carson C T, Laurent L C, Marsala M, Gage F H, Remes A M, Koo E H, Goldstein L S (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384): 216-220
|
21 |
Jiang H, Ren Y, Yuen E Y, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun, 3: 668
|
22 |
Juopperi T A, Song H, Ming G L (2011). Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurol, 6(3): 363-373
|
23 |
Keller F, Persico A M (2003). The neurobiological context of autism. Mol Neurobiol 28(1): 1-22
|
24 |
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761-773
|
25 |
Kim K Y, Hysolli E, Park I H (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci USA, 108(34): 14169-14174
|
26 |
Koch P, Opitz T, Steinbeck J A, Ladewig J, Brüstle O (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA, 106(9): 3225-3230
|
27 |
Krencik R, Weick J P, Liu Y, Zhang Z J, Zhang S C (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol, 29(6): 528-534
|
28 |
Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262): 402-406
|
29 |
Lister R, Pelizzola M, Kida Y S, Hawkins R D, Nery J R, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson J A, Evans R M, Ecker J R (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336): 68-73
|
30 |
Mao Y, Ge X, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 136(6): 1017-1031
|
31 |
Martin I, Dawson V L, Dawson T M (2011). Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet, 12(1): 301-325
|
32 |
Marchetto M C, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4): 527-39
|
33 |
Millar J K, Wilson-Annan J C, Anderson S, Christie S, Taylor M S, Semple C A, Devon R S, St Clair D M, Muir W J, Blackwood D H, Porteous D J (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet, 9(9): 1415-1423
|
34 |
Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3): 267-280
|
35 |
Pang Z P, Yang N, Vierbuchen T, Ostermeier A, Fuentes D R, Yang T Q, Citri A, Sebastiano V, Marro S, Südhof T C, Wernig M (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359): 220-223
|
36 |
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141-146
|
37 |
Paşca S P, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca A M, Cord B, Palmer T D, Chikahisa S, Nishino S, Bernstein J A, Hallmayer J, Geschwind D H, Dolmetsch R E (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med, 17(12): 1657-1662
|
38 |
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA, 108(25): 10343-10348
|
39 |
Pomp O, Dreesen O, Leong D F, Meller-Pomp O, Tan T T, Zhou F, Colman A (2011). Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell, 9(2): 156-165
|
40 |
Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti W B, Moreno H, Abeliovich A (2011). Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell, 146(3): 359-371
|
41 |
Ross C A, Margolis R L, Reading S A, Pletnikov M, Coyle J T (2006). Neurobiology of schizophrenia. Neuron, 52(1): 139-153
|
42 |
Sachs N A, Sawa A, Holmes S E, Ross C A, DeLisi L E, Margolis R L (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry, 10(8): 758-764
|
43 |
Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci, 31(16): 5970-5976
|
44 |
Shi Y, Kirwan P, Smith J, Robinson H P, Livesey F J (2012). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci, 15(3): 477-486
|
45 |
Slaugenhaupt S A, Blumenfeld A, Gill S P, Leyne M, Mull J, Cuajungco M P, Liebert C B, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod F B, Gusella J F (2001). Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet, 68(3): 598-605
|
46 |
Slaugenhaupt S A, Mull J, Leyne M, Cuajungco M P, Gill S P, Hims M M, Quintero F, Axelrod F B, Gusella J F (2003). Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet, 13(4): 429-436
|
47 |
Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318-331
|
48 |
Spitzer N C (2006). Electrical activity in early neuronal development. Nature, 444(7120): 707-712
|
49 |
St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, Gosden C, Evans H J (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706): 13-16
|
50 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872
|
51 |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676
|
52 |
Tchieu J, Kuoy E, Chin M H, Trinh H, Patterson M, Sherman S P, Aimiuwu O, Lindgren A, Hakimian S, Zack J A, Clark A T, Pyle A D, Lowry W E, Plath K (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell, 7(3): 329-342
|
53 |
Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA, 106(6): 2029-2034
|
54 |
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100-113
|
55 |
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035-1041
|
56 |
Weinberger D R (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry, 44(7): 660-669
|
57 |
Yoo A S, Sun A X, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch R E, Tsien R W, Crabtree G R (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359): 228-231
|
58 |
Yu J, Vodyanik M A, SmugaOtto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917-1920
|
/
〈 | 〉 |