REVIEW

Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity

  • Shang WU ,
  • Harley M. S. SMITH
Expand
  • Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA

Received date: 08 Sep 2011

Accepted date: 12 Oct 2011

Published date: 01 Apr 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem. Meristem maintenance is dependent upon the balance of stem cell perpetuation in the central zone (CZ) and organogenesis in the peripheral zone (PZ). Although the mechanisms that coordinate CZ and PZ function is not understood, meristem cell fate is likely achieved by the spatial interplay between gene regulatory networks and hormone signaling pathways. During shoot maturation, the identity of the shoot meristem as well as the lateral organs are transformed during the vegetative and reproductive transitions. Studies in model plant systems indicate that three amino acid extension (TALE) homeodomain proteins integrate signaling events that transform the identity of the shoot meristem and establish reproductive patterns of growth. This review will highlight the function of TALE homeodomain transcription factors that regulate shoot meristem cell fate and also function with phase specific regulators to maintain shoot meristem identity.

Cite this article

Shang WU , Harley M. S. SMITH . Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity[J]. Frontiers in Biology, 2012 , 7(2) : 144 -154 . DOI: 10.1007/s11515-011-1182-y

Acknowledgments

We would like to acknowledge the Center for Plant Cell Biology and the Department of Botany and Plant Sciences at the University of California, Riverside, for support. We are also grateful to the reviewers who provided constructive comments on the review. The Hofshi Foundation and Several Fish Inc provide funding for our research program.
1
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737): 1052–1056

DOI PMID

2
Aida M, Ishida T, Tasaka M (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126(8): 1563–1570

PMID

3
Aida M, Tasaka M (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol, 60(6): 915–928

DOI PMID

4
Amasino R (2010). Seasonal and developmental timing of flowering. Plant J, 61(6): 1001–1013

DOI PMID

5
Barton M K (2010). Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol, 341(1): 95–113

DOI PMID

6
Barton M K, Poethig R S (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119(16): 823–831

7
Becker A, Theissen G (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 29(3): 464–489

DOI PMID

8
Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 18(8): 1900–1907

DOI PMID

9
Bernier G (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Physiol Plant Mol Biol, 39(1): 175–219

DOI

10
Bernier G (2011). My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot, (In press)

DOI PMID

11
Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H (2004). VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene, 328: 103–111

DOI PMID

12
Bleckmann A, Simon R (2009). Interdomain signaling in stem cell maintenance of plant shoot meristems. Mol Cells, 27(6): 615–620

DOI PMID

13
Bolduc N, Hake S (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell, 21(6): 1647–1658

DOI PMID

14
Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J, 24(1): 103–111

DOI PMID

15
Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119(3): 721–743

16
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L (2007). Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell, 19(8): 2544–2556

DOI PMID

17
Braybrook S A, Kuhlemeier C (2010). How a plant builds leaves. Plant Cell, 22(4): 1006–1018

DOI PMID

18
Byrne M E, Groover A T, Fontana J R, Martienssen R A (2003). Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development, 130(17): 3941–3950

DOI PMID

19
Byrne M E, Simorowski J, Martienssen R A (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 129(8): 1957–1965

PMID

20
Chae E, Tan Q K, Hill T A, Irish V F (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135(7): 1235–1245

DOI PMID

21
Chen H, Banerjee A K, Hannapel D J (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J, 38(2): 276–284

DOI PMID

22
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 122(5): 1567–1575

PMID

23
Crevillén P, Dean C (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol, 14(1): 38–44

DOI PMID

24
D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J, 65(6): 972–979

DOI PMID

25
de Folter S, Immink R G, Kieffer M, Parenicová L, Henz S R, Weigel D, Busscher M, Kooiker M, Colombo L, Kater M M, Davies B, Angenent G C (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell, 17(5): 1424–1433

DOI PMID

26
Dodsworth S (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol, 336(1): 1–9

DOI PMID

27
Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol, 60(4): 469–480

DOI PMID

28
Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 10(6): 967–979

DOI PMID

29
Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 18(9): 2172–2181

DOI PMID

30
Ferrándiz C, Gu Q, Martienssen R, Yanofsky M F (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127(4): 725–734

PMID

31
Fornara F, de Montaigu A, Coupland G (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141(3): 550, 550 e1–2

32
Gómez-Mena C, Sablowski R (2008). ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell, 20(8): 2059–2072

DOI PMID

33
Gregis V, Sessa A, Colombo L, Kater M M (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J, 56(6): 891–902

DOI PMID

34
Gustafson-Brown C, Savidge B, Yanofsky M F (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell, 76(1): 131–143

DOI PMID

35
Hake S, Smith H M, Holtan H, Magnani E, Mele G, Ramirez J (2004). The role of knox genes in plant development. Annu Rev Cell Dev Biol, 20(1): 125–151

DOI PMID

36
Hamant O, Pautot V (2010). Plant development: a TALE story. C R Biol, 333(4): 371–381

DOI PMID

37
Hay A, Tsiantis M (2009). A KNOX family TALE. Curr Opin Plant Biol, 12(5): 593–598

DOI PMID

38
Hay A, Tsiantis M (2010). KNOX genes: versatile regulators of plant development and diversity. Development, 137(19): 3153–3165

DOI PMID

39
Helliwell C, Wood C, Robertson M, Peacock J, Dennis E (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecularweight protein complex. The Plant Journal, 46(2), 183–192

40
Hepworth S, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal, 21(16): 4327–4337

41
Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008). Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol, 268: 191–221

DOI PMID

42
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120: 405–413

43
Jang S, Torti S, Coupland G (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 60(4): 614–625

DOI PMID

44
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 15(17): 1560–1565

DOI PMID

45
Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith H M (2008). Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J, 54(5): 924–937

DOI PMID

46
Kanrar S, Onguka O, Smith H M S (2006). Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta, 224(5): 1163–1173

DOI PMID

47
Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, Hake S (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development, 124(16): 3045–3054

PMID

48
King R W, Evans L T (2003). Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol, 54(1): 307–328

DOI PMID

49
Kobayashi Y, Weigel D (2007). Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev, 21(19): 2371–2384

DOI PMID

50
Kyozuka J (2007). Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol, 10(5): 442–446

DOI PMID

51
Lal S, Pacis L B, Smith H M (2011). Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant, (In press)

DOI PMID

52
Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 14(18): 2366–2376

DOI PMID

53
Lee J, Lee I (2010). Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot, 61(9): 2247–2254

DOI PMID

54
Lee J, Oh M, Park H, Lee I (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J, 55(5): 832–843

DOI PMID

55
Liljegren S J, Gustafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11(6): 1007–1018

PMID

56
Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 135(8): 1481–1491

DOI PMID

57
Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development, 134(10): 1901–1910

DOI PMID

58
Long J A, Barton M K (1998). The development of apical embryonic pattern in Arabidopsis. Development, 125(16): 3027–3035

PMID

59
Long J A, Moan E I, Medford J I, Barton M K (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379(6560): 66–69

DOI PMID

60
Lyndon R F (1998). The shoot apical meristem, Its growth and development. (Cambridge: Cambridge University Press).

61
Mandel M A, Yanofsky M F (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell, 7(11): 1763–1771

PMID

62
Martínez-Zapater J M, Jarillo J A, Cruz-Alvarez M, Roldan M, Salinas J (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J, 7(4): 543–551

DOI

63
Messenguy F, Dubois E (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 316: 1–21

DOI PMID

64
Michaels S D, Amasino R M (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11(5): 949–956

PMID

65
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 33(5): 867–874

DOI PMID

66
Moens C B, Selleri L (2006). Hox cofactors in vertebrate development. Dev Biol, 291(2): 193–206

DOI PMID

67
Mukherjee K, Brocchieri L, Bürglin T R (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 26(12): 2775–2794

DOI PMID

68
Parcy F, Nilsson O, Busch M A, Lee I, Weigel D (1998). A genetic framework for floral patterning. Nature, 395(6702): 561–566

DOI PMID

69
Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell, 13(12): 2687–2702

PMID

70
Proveniers M, Rutjens B, Brand M, Smeekens S (2007). The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J, 52(5): 899–913

DOI PMID

71
Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol, 50(3): 429–438

DOI PMID

72
Ragni L, Belles-Boix E, Günl M, Pautot V (2008). Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell, 20(4): 888–900

DOI PMID

73
Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol, 151(4): 1878–1888

DOI PMID

74
Roeder A H, Ferrándiz C, Yanofsky M F (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol, 13(18): 1630–1635

DOI PMID

75
Ruiz-García L, Madueño F, Wilkinson M, Haughn G, Salinas J, Martínez-Zapater J M (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9(11): 1921–1934

PMID

76
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009). Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J, 58(4): 641–654

DOI PMID

77
Saddic L A, Huvermann B, Bezhani S, Su Y, Winter C M, Kwon C S, Collum R P, Wagner D (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133(9): 1673–1682

DOI PMID

78
Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev, 15(5): 581–590

DOI PMID

79
Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288(5471): 1613–1616

DOI PMID

80
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U (2003). Dissection of floral induction pathways using global expression analysis. Development, 130(24): 6001–6012

DOI PMID

81
Schultz E A, Haughn G W (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development, 119: 745–765

82
Scofield S, Murray J A (2006). KNOX gene function in plant stem cell niches. Plant Mol Biol, 60(6): 929–946

DOI PMID

83
Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 20(7): 898–912

DOI PMID

84
Shalit A, Rozman A, Goldshmidt A, Alvarez J P, Bowman J L, Eshed Y, Lifschitz E (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA, 106(20): 8392–8397

DOI PMID

85
Shani E, Yanai O, Ori N (2006). The role of hormones in shoot apical meristem function. Curr Opin Plant Biol, 9(5): 484–489

DOI PMID

86
Shen W H, Xu L (2009). Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant, 2(4): 600–609

DOI PMID

87
Smith H M, Campbell B C, Hake S (2004). Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol, 14(9): 812–817

DOI PMID

88
Smith H M, Hake S (2003). The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell, 15(8): 1717–1727

DOI PMID

89
Smith H M, Ung N, Lal S, Courtier J (2011). Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot, 62(2): 583–593

DOI PMID

90
Smith H M S, Boschke I, Hake S (2002). Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA, 99(14): 9579–9584

DOI PMID

91
Smith L G, Greene B, Veit B, Hake S (1992). A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 116(1): 21–30

PMID

92
Souer E, Rebocho A B, Bliek M, Kusters E, de Bruin R A, Koes R (2008). Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell, 20(8): 2033–2048

DOI PMID

93
Steeves T A, Sussex I M (1989). Patterns in Plant Development. (Cambridge: Cambridge University Press).

94
Takada S, Hibara K i, Ishida T, Tasaka M (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128(7): 1127–1135

PMID

95
Takano S, Niihama M, Smith H M, Tasaka M, Aida M (2010). gorgon, a novel missense mutation in the SHOOT MERISTEMLESS gene, impairs shoot meristem homeostasis in Arabidopsis. Plant Cell Physiol, 51(4): 621–634

DOI PMID

96
Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 476(7360): 332–335

DOI PMID

97
Telfer A, Bollman K M, Poethig R S (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development, 124(3): 645–654

PMID

98
Teper-Bamnolker P, Samach A (2005). The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 17(10): 2661–2675

DOI PMID

99
Trevaskis B, Hemming M N, Peacock W J, Dennis E S (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol, 140(4): 1397–1405

DOI PMID

100
Ung N, Lal S, Smith H M (2011). The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol, 156(2): 605–614

DOI PMID

101
van der Schoot C, Rinne P L (2011). Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci, 180(1): 120–131

DOI PMID

102
van der Valk P, Proveniers M C G, Pertijs J H, Lamers J T W H, van Dun C M P, Smeekens J C M (2004). Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed, 123(6): 531–535

DOI

103
Vernoux T, Besnard F, Traas J (2010). Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol, 2(4): a001487

DOI PMID

104
Vollbrecht E, Reiser L, Hake S (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development, 127(14): 3161–3172

PMID

105
Wagner D, Sablowski R W M, Meyerowitz E M (1999). Transcriptional activation of APETALA1 by LEAFY. Science, 285(5427): 582–584

DOI PMID

106
Wang J W, Czech B, Weigel D (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138(4): 738–749

DOI PMID

107
Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5): 843–859

DOI PMID

108
Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309(5737): 1056–1059

DOI PMID

109
William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA, 101(6): 1775–1780

DOI PMID

110
Willmann M R, Poethig R S (2011). The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development, 138(4): 677–685

DOI PMID

111
Winter C M, Austin R S, Blanvillain-Baufumé S, Reback M A, Monniaux M, Wu M F, Sang Y, Yamaguchi A, Yamaguchi N, Parker J E, Parcy F, Jensen S T, Li H, Wagner D (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell, 20(4): 430–443

DOI PMID

112
Yamaguchi A, Wu M F, Yang L, Wu G, Poethig R S, Wagner D (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell, 17(2): 268–278

DOI PMID

113
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303(5664): 1640–1644

DOI PMID

114
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 15(17): 1566–1571

DOI PMID

115
Yu H, Ito T, Wellmer F, Meyerowitz E M (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet, 36(2): 157–161

DOI PMID

116
Yu H, Xu Y, Tan E L, Kumar P P (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA, 99(25): 16336–16341

DOI PMID

Outlines

/