Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity
Shang WU, Harley M. S. SMITH
Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity
The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem. Meristem maintenance is dependent upon the balance of stem cell perpetuation in the central zone (CZ) and organogenesis in the peripheral zone (PZ). Although the mechanisms that coordinate CZ and PZ function is not understood, meristem cell fate is likely achieved by the spatial interplay between gene regulatory networks and hormone signaling pathways. During shoot maturation, the identity of the shoot meristem as well as the lateral organs are transformed during the vegetative and reproductive transitions. Studies in model plant systems indicate that three amino acid extension (TALE) homeodomain proteins integrate signaling events that transform the identity of the shoot meristem and establish reproductive patterns of growth. This review will highlight the function of TALE homeodomain transcription factors that regulate shoot meristem cell fate and also function with phase specific regulators to maintain shoot meristem identity.
shoot development / meristem / flowering / patterning / homeodomain
[1] |
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737): 1052–1056
CrossRef
Pubmed
Google scholar
|
[2] |
Aida M, Ishida T, Tasaka M (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126(8): 1563–1570
Pubmed
|
[3] |
Aida M, Tasaka M (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol, 60(6): 915–928
CrossRef
Pubmed
Google scholar
|
[4] |
Amasino R (2010). Seasonal and developmental timing of flowering. Plant J, 61(6): 1001–1013
CrossRef
Pubmed
Google scholar
|
[5] |
Barton M K (2010). Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol, 341(1): 95–113
CrossRef
Pubmed
Google scholar
|
[6] |
Barton M K, Poethig R S (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119(16): 823–831
|
[7] |
Becker A, Theissen G (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 29(3): 464–489
CrossRef
Pubmed
Google scholar
|
[8] |
Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 18(8): 1900–1907
CrossRef
Pubmed
Google scholar
|
[9] |
Bernier G (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Physiol Plant Mol Biol, 39(1): 175–219
CrossRef
Google scholar
|
[10] |
Bernier G (2011). My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot, (In press)
CrossRef
Pubmed
Google scholar
|
[11] |
Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H (2004). VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene, 328: 103–111
CrossRef
Pubmed
Google scholar
|
[12] |
Bleckmann A, Simon R (2009). Interdomain signaling in stem cell maintenance of plant shoot meristems. Mol Cells, 27(6): 615–620
CrossRef
Pubmed
Google scholar
|
[13] |
Bolduc N, Hake S (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell, 21(6): 1647–1658
CrossRef
Pubmed
Google scholar
|
[14] |
Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J, 24(1): 103–111
CrossRef
Pubmed
Google scholar
|
[15] |
Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119(3): 721–743
|
[16] |
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L (2007). Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell, 19(8): 2544–2556
CrossRef
Pubmed
Google scholar
|
[17] |
Braybrook S A, Kuhlemeier C (2010). How a plant builds leaves. Plant Cell, 22(4): 1006–1018
CrossRef
Pubmed
Google scholar
|
[18] |
Byrne M E, Groover A T, Fontana J R, Martienssen R A (2003). Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development, 130(17): 3941–3950
CrossRef
Pubmed
Google scholar
|
[19] |
Byrne M E, Simorowski J, Martienssen R A (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 129(8): 1957–1965
Pubmed
|
[20] |
Chae E, Tan Q K, Hill T A, Irish V F (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135(7): 1235–1245
CrossRef
Pubmed
Google scholar
|
[21] |
Chen H, Banerjee A K, Hannapel D J (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J, 38(2): 276–284
CrossRef
Pubmed
Google scholar
|
[22] |
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 122(5): 1567–1575
Pubmed
|
[23] |
Crevillén P, Dean C (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol, 14(1): 38–44
CrossRef
Pubmed
Google scholar
|
[24] |
D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J, 65(6): 972–979
CrossRef
Pubmed
Google scholar
|
[25] |
de Folter S, Immink R G, Kieffer M, Parenicová L, Henz S R, Weigel D, Busscher M, Kooiker M, Colombo L, Kater M M, Davies B, Angenent G C (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell, 17(5): 1424–1433
CrossRef
Pubmed
Google scholar
|
[26] |
Dodsworth S (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol, 336(1): 1–9
CrossRef
Pubmed
Google scholar
|
[27] |
Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol, 60(4): 469–480
CrossRef
Pubmed
Google scholar
|
[28] |
Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 10(6): 967–979
CrossRef
Pubmed
Google scholar
|
[29] |
Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 18(9): 2172–2181
CrossRef
Pubmed
Google scholar
|
[30] |
Ferrándiz C, Gu Q, Martienssen R, Yanofsky M F (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127(4): 725–734
Pubmed
|
[31] |
Fornara F, de Montaigu A, Coupland G (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141(3): 550, 550 e1–2
|
[32] |
Gómez-Mena C, Sablowski R (2008). ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell, 20(8): 2059–2072
CrossRef
Pubmed
Google scholar
|
[33] |
Gregis V, Sessa A, Colombo L, Kater M M (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J, 56(6): 891–902
CrossRef
Pubmed
Google scholar
|
[34] |
Gustafson-Brown C, Savidge B, Yanofsky M F (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell, 76(1): 131–143
CrossRef
Pubmed
Google scholar
|
[35] |
Hake S, Smith H M, Holtan H, Magnani E, Mele G, Ramirez J (2004). The role of knox genes in plant development. Annu Rev Cell Dev Biol, 20(1): 125–151
CrossRef
Pubmed
Google scholar
|
[36] |
Hamant O, Pautot V (2010). Plant development: a TALE story. C R Biol, 333(4): 371–381
CrossRef
Pubmed
Google scholar
|
[37] |
Hay A, Tsiantis M (2009). A KNOX family TALE. Curr Opin Plant Biol, 12(5): 593–598
CrossRef
Pubmed
Google scholar
|
[38] |
Hay A, Tsiantis M (2010). KNOX genes: versatile regulators of plant development and diversity. Development, 137(19): 3153–3165
CrossRef
Pubmed
Google scholar
|
[39] |
Helliwell C, Wood C, Robertson M, Peacock J, Dennis E (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecularweight protein complex. The Plant Journal, 46(2), 183–192
|
[40] |
Hepworth S, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal, 21(16): 4327–4337
|
[41] |
Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008). Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol, 268: 191–221
CrossRef
Pubmed
Google scholar
|
[42] |
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 120: 405–413
|
[43] |
Jang S, Torti S, Coupland G (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 60(4): 614–625
CrossRef
Pubmed
Google scholar
|
[44] |
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 15(17): 1560–1565
CrossRef
Pubmed
Google scholar
|
[45] |
Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith H M (2008). Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J, 54(5): 924–937
CrossRef
Pubmed
Google scholar
|
[46] |
Kanrar S, Onguka O, Smith H M S (2006). Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta, 224(5): 1163–1173
CrossRef
Pubmed
Google scholar
|
[47] |
Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, Hake S (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development, 124(16): 3045–3054
Pubmed
|
[48] |
King R W, Evans L T (2003). Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol, 54(1): 307–328
CrossRef
Pubmed
Google scholar
|
[49] |
Kobayashi Y, Weigel D (2007). Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev, 21(19): 2371–2384
CrossRef
Pubmed
Google scholar
|
[50] |
Kyozuka J (2007). Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol, 10(5): 442–446
CrossRef
Pubmed
Google scholar
|
[51] |
Lal S, Pacis L B, Smith H M (2011). Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant, (In press)
CrossRef
Pubmed
Google scholar
|
[52] |
Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 14(18): 2366–2376
CrossRef
Pubmed
Google scholar
|
[53] |
Lee J, Lee I (2010). Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot, 61(9): 2247–2254
CrossRef
Pubmed
Google scholar
|
[54] |
Lee J, Oh M, Park H, Lee I (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J, 55(5): 832–843
CrossRef
Pubmed
Google scholar
|
[55] |
Liljegren S J, Gustafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11(6): 1007–1018
Pubmed
|
[56] |
Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 135(8): 1481–1491
CrossRef
Pubmed
Google scholar
|
[57] |
Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development, 134(10): 1901–1910
CrossRef
Pubmed
Google scholar
|
[58] |
Long J A, Barton M K (1998). The development of apical embryonic pattern in Arabidopsis. Development, 125(16): 3027–3035
Pubmed
|
[59] |
Long J A, Moan E I, Medford J I, Barton M K (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379(6560): 66–69
CrossRef
Pubmed
Google scholar
|
[60] |
Lyndon R F (1998). The shoot apical meristem, Its growth and development. (Cambridge: Cambridge University Press).
|
[61] |
Mandel M A, Yanofsky M F (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell, 7(11): 1763–1771
Pubmed
|
[62] |
Martínez-Zapater J M, Jarillo J A, Cruz-Alvarez M, Roldan M, Salinas J (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J, 7(4): 543–551
CrossRef
Google scholar
|
[63] |
Messenguy F, Dubois E (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 316: 1–21
CrossRef
Pubmed
Google scholar
|
[64] |
Michaels S D, Amasino R M (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11(5): 949–956
Pubmed
|
[65] |
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 33(5): 867–874
CrossRef
Pubmed
Google scholar
|
[66] |
Moens C B, Selleri L (2006). Hox cofactors in vertebrate development. Dev Biol, 291(2): 193–206
CrossRef
Pubmed
Google scholar
|
[67] |
Mukherjee K, Brocchieri L, Bürglin T R (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 26(12): 2775–2794
CrossRef
Pubmed
Google scholar
|
[68] |
Parcy F, Nilsson O, Busch M A, Lee I, Weigel D (1998). A genetic framework for floral patterning. Nature, 395(6702): 561–566
CrossRef
Pubmed
Google scholar
|
[69] |
Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell, 13(12): 2687–2702
Pubmed
|
[70] |
Proveniers M, Rutjens B, Brand M, Smeekens S (2007). The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J, 52(5): 899–913
CrossRef
Pubmed
Google scholar
|
[71] |
Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol, 50(3): 429–438
CrossRef
Pubmed
Google scholar
|
[72] |
Ragni L, Belles-Boix E, Günl M, Pautot V (2008). Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell, 20(4): 888–900
CrossRef
Pubmed
Google scholar
|
[73] |
Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol, 151(4): 1878–1888
CrossRef
Pubmed
Google scholar
|
[74] |
Roeder A H, Ferrándiz C, Yanofsky M F (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol, 13(18): 1630–1635
CrossRef
Pubmed
Google scholar
|
[75] |
Ruiz-García L, Madueño F, Wilkinson M, Haughn G, Salinas J, Martínez-Zapater J M (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9(11): 1921–1934
Pubmed
|
[76] |
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009). Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J, 58(4): 641–654
CrossRef
Pubmed
Google scholar
|
[77] |
Saddic L A, Huvermann B, Bezhani S, Su Y, Winter C M, Kwon C S, Collum R P, Wagner D (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133(9): 1673–1682
CrossRef
Pubmed
Google scholar
|
[78] |
Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev, 15(5): 581–590
CrossRef
Pubmed
Google scholar
|
[79] |
Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288(5471): 1613–1616
CrossRef
Pubmed
Google scholar
|
[80] |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U (2003). Dissection of floral induction pathways using global expression analysis. Development, 130(24): 6001–6012
CrossRef
Pubmed
Google scholar
|
[81] |
Schultz E A, Haughn G W (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development, 119: 745–765
|
[82] |
Scofield S, Murray J A (2006). KNOX gene function in plant stem cell niches. Plant Mol Biol, 60(6): 929–946
CrossRef
Pubmed
Google scholar
|
[83] |
Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 20(7): 898–912
CrossRef
Pubmed
Google scholar
|
[84] |
Shalit A, Rozman A, Goldshmidt A, Alvarez J P, Bowman J L, Eshed Y, Lifschitz E (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA, 106(20): 8392–8397
CrossRef
Pubmed
Google scholar
|
[85] |
Shani E, Yanai O, Ori N (2006). The role of hormones in shoot apical meristem function. Curr Opin Plant Biol, 9(5): 484–489
CrossRef
Pubmed
Google scholar
|
[86] |
Shen W H, Xu L (2009). Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant, 2(4): 600–609
CrossRef
Pubmed
Google scholar
|
[87] |
Smith H M, Campbell B C, Hake S (2004). Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol, 14(9): 812–817
CrossRef
Pubmed
Google scholar
|
[88] |
Smith H M, Hake S (2003). The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell, 15(8): 1717–1727
CrossRef
Pubmed
Google scholar
|
[89] |
Smith H M, Ung N, Lal S, Courtier J (2011). Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot, 62(2): 583–593
CrossRef
Pubmed
Google scholar
|
[90] |
Smith H M S, Boschke I, Hake S (2002). Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA, 99(14): 9579–9584
CrossRef
Pubmed
Google scholar
|
[91] |
Smith L G, Greene B, Veit B, Hake S (1992). A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 116(1): 21–30
Pubmed
|
[92] |
Souer E, Rebocho A B, Bliek M, Kusters E, de Bruin R A, Koes R (2008). Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell, 20(8): 2033–2048
CrossRef
Pubmed
Google scholar
|
[93] |
Steeves T A, Sussex I M (1989). Patterns in Plant Development. (Cambridge: Cambridge University Press).
|
[94] |
Takada S, Hibara K i, Ishida T, Tasaka M (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128(7): 1127–1135
Pubmed
|
[95] |
Takano S, Niihama M, Smith H M, Tasaka M, Aida M (2010). gorgon, a novel missense mutation in the SHOOT MERISTEMLESS gene, impairs shoot meristem homeostasis in Arabidopsis. Plant Cell Physiol, 51(4): 621–634
CrossRef
Pubmed
Google scholar
|
[96] |
Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 476(7360): 332–335
CrossRef
Pubmed
Google scholar
|
[97] |
Telfer A, Bollman K M, Poethig R S (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development, 124(3): 645–654
Pubmed
|
[98] |
Teper-Bamnolker P, Samach A (2005). The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 17(10): 2661–2675
CrossRef
Pubmed
Google scholar
|
[99] |
Trevaskis B, Hemming M N, Peacock W J, Dennis E S (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol, 140(4): 1397–1405
CrossRef
Pubmed
Google scholar
|
[100] |
Ung N, Lal S, Smith H M (2011). The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol, 156(2): 605–614
CrossRef
Pubmed
Google scholar
|
[101] |
van der Schoot C, Rinne P L (2011). Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci, 180(1): 120–131
CrossRef
Pubmed
Google scholar
|
[102] |
van der Valk P, Proveniers M C G, Pertijs J H, Lamers J T W H, van Dun C M P, Smeekens J C M (2004). Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed, 123(6): 531–535
CrossRef
Google scholar
|
[103] |
Vernoux T, Besnard F, Traas J (2010). Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol, 2(4): a001487
CrossRef
Pubmed
Google scholar
|
[104] |
Vollbrecht E, Reiser L, Hake S (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development, 127(14): 3161–3172
Pubmed
|
[105] |
Wagner D, Sablowski R W M, Meyerowitz E M (1999). Transcriptional activation of APETALA1 by LEAFY. Science, 285(5427): 582–584
CrossRef
Pubmed
Google scholar
|
[106] |
Wang J W, Czech B, Weigel D (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138(4): 738–749
CrossRef
Pubmed
Google scholar
|
[107] |
Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5): 843–859
CrossRef
Pubmed
Google scholar
|
[108] |
Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309(5737): 1056–1059
CrossRef
Pubmed
Google scholar
|
[109] |
William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA, 101(6): 1775–1780
CrossRef
Pubmed
Google scholar
|
[110] |
Willmann M R, Poethig R S (2011). The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development, 138(4): 677–685
CrossRef
Pubmed
Google scholar
|
[111] |
Winter C M, Austin R S, Blanvillain-Baufumé S, Reback M A, Monniaux M, Wu M F, Sang Y, Yamaguchi A, Yamaguchi N, Parker J E, Parcy F, Jensen S T, Li H, Wagner D (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell, 20(4): 430–443
CrossRef
Pubmed
Google scholar
|
[112] |
Yamaguchi A, Wu M F, Yang L, Wu G, Poethig R S, Wagner D (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell, 17(2): 268–278
CrossRef
Pubmed
Google scholar
|
[113] |
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303(5664): 1640–1644
CrossRef
Pubmed
Google scholar
|
[114] |
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 15(17): 1566–1571
CrossRef
Pubmed
Google scholar
|
[115] |
Yu H, Ito T, Wellmer F, Meyerowitz E M (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet, 36(2): 157–161
CrossRef
Pubmed
Google scholar
|
[116] |
Yu H, Xu Y, Tan E L, Kumar P P (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA, 99(25): 16336–16341
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |