Quantitative analysis of FRET assay in biology —New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade
Received date: 24 May 2011
Accepted date: 20 Jun 2011
Published date: 01 Feb 2012
Copyright
Förster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro and in vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Km, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.
Yan LIU , Yang SONG , Ling JIANG , Jiayu LIAO . Quantitative analysis of FRET assay in biology —New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade[J]. Frontiers in Biology, 2012 , 7(1) : 57 -64 . DOI: 10.1007/s11515-011-1164-0
1 |
Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009). Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol, 85(1): 287–297
|
2 |
Andreou A M, Tavernarakis N (2009). SUMOylation and cell signalling. Biotechnol J, 4(12): 1740–1752
|
3 |
Bendix P M, Pedersen M S, Stamou D (2009). Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci USA, 106(30): 12341–12346
|
4 |
Bücher H, Drexhage K H, Fleck M, Kuhn H, Möbius D, Schäfer F P, Sondermann J, Sperling W, Tillmann P, Wiegand J (1967). Controlled transfer of excitation energy through thin layers. Mol Cryst, 2(3): 199–230
|
5 |
Cheng A K H, Su H, Wang Y A, Yu H Z (2009). Aptamer-based detection of detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem, 81(15): 6130–6139
|
6 |
Dams G, Van Acker K, Gustin E, Vereycken I, Bunkens L, Holemans P, Smeulders L, Clayton R, Ohagen A, Hertogs K (2007). A time-resolved fluorescence assay to identify small-molecule inhibitors of HIV-1 fusion. J Biomol Screen, 12(6): 865–874
|
7 |
dos Remedios C G, Moens P D (1995). Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol, 115(2): 175–185
|
8 |
Eis P S, Olson M C, Takova T, Curtis M L, Olson S M, Vener T I, Ip H S, Vedvik K L, Bartholomay C T, Allawi H T, Ma W P, Hall J G, Morin M D, Rushmore T H, Lyamichev V I, Kwiatkowski R W (2001). An invasive cleavage assay for direct quantitation of specific RNAs. Nat Biotechnol, 19(7): 673–676
|
9 |
Elangovan M, Wallrabe H, Chen Y, Day R N, Barroso M, Periasamy A (2003). Characterization of one and two photon excitation fluorescence resonance energy transfer microscopy. Methods, 29: 58–73
|
10 |
Förster T (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys, 437(1–2): 55–75
|
11 |
Gambin Y, Deniz A A (2010). Multicolor single-molecule FRET to explore protein folding and binding. Mol Biosyst, 6(9): 1540–1547
|
12 |
Gareau J R, Lima C D (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12): 861–871
|
13 |
Gordon G W, Berry G, Liang X H, Levine B, Herman B (1998), Quantitative fluorescence resonance energy transfer measurements using fluroescnece miscroscop. Biophys J, 74: 2702–2713
|
14 |
Haugland R P, Yguerabide J, Stryer L (1969). Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci USA, 63(1): 23–30
|
15 |
Hires S A, Zhu Y, Tsien R Y (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA, 105(11): 4411–4416
|
16 |
Johnson E S (2004). Protein modification by SUMO. Annu Rev Biochem, 73(1): 355–382
|
17 |
Kam Z, Volberg T, Geiger B (1995). Mapping of adherens junction components using microscopic resonance energy transfer imaging. J Cell Sci, 108(Pt 3): 1051–1062
|
18 |
Kenworthy A K (2001). Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods, 24(3): 289–296
|
19 |
Lam A D, Ismail S, Wu R, Yizhar O, Passmore D R, Ernst S A, Stuenkel E L (2010). Mapping dynamic protein interactions to insulin secretory granule behavior with TIRF-FRET. Biophys J, 99(4): 1311–1320
|
20 |
Lu S, Wang Y (2010). Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy. Clin Cancer Res, 16(15): 3822–3824
|
21 |
Mahajan N P, Linder K, Berry G, Gordon G W, Heim R, Herman B (1998). Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol, 16(6): 547–552
|
22 |
Martin S F, Tatham M H, Hay R T, Samuel I D (2008). Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci, 17(4): 777–784
|
23 |
Mehta K, Hoppe A D, Kainkaryam R, Woolf P J, Linderman J J (2009). A computational approach to inferring cellular protein-binding affinities from quantitative fluorescence resonance energy transfer imaging. Proteomics, 9(23): 5371–5383
|
24 |
Merchant K A, Best R B, Louis J M, Gopich I V, Eaton W A (2007). Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci USA, 104(5): 1528–1533
|
25 |
Nguyen A W, Daugherty P S (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 23(3): 355–360
|
26 |
Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J, 95(6): 2976–2988
|
27 |
Peter M, Ameer-Beg S M, Hughes M K, Keppler M D, Prag S, Marsh M, Vojnovic B, Ng T (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J, 88(2): 1224–1237
|
28 |
Prasuhn D E, Feltz A, Blanco-Canosa J B, Susumu K, Stewart M H, Mei B C, Yakovlev A V, Loukov C, Mallet J M, Oheim M, Dawson P E, Medintz I L (2010). Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano, 4(9): 5487–5497
|
29 |
Reverter D, Lima C D, (2006). Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol, 13(12): 1060–1068
|
29 |
Saucerman J J, Zhang J, Martin J C, Peng L X, Stenbit A E, Tsien R Y, McCulloch A D (2006). Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA, 103(34): 12923–12928
|
29 |
Shen L, Tatham M H, Dong C, Zagórska A, Naismith J H, Hay R T (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol, 13(12): 1069–1077
|
30 |
Song Y, Madahar V, Liao J (2011). Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng, 39(4): 1224–1234
|
31 |
Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104
|
32 |
Stryer L (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem, 47(1): 819–846
|
33 |
Stryer L R P H, Haugland R P (1967). Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA, 58(2): 719–726
|
34 |
Suzuki Y (2000). Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Methods, 22(4): 355–363
|
35 |
Szöllosi J, Nagy P, Sebestyén Z, Damjanovicha S, Park J W, Mátyus L (2002). Application of fluorescence resonance engergy transfer for mapping biological membranes. Rev Mol Biotechnol, 82: 251–266
|
36 |
Tatham M H, Kim S, Yu B, Jaffray E, Song J, Zheng J, Rodriguez M S, Hay R T, Chen Y (2003). Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry, 42(33): 9959–9969
|
37 |
Tron L, Szöllósi J, Damjanovich S, Helliwell S H, Arndt-Jovin D J, Jovin T M (1984). Flow cytometric measurment of FRET on cell surfaces. Biophys J, 45: 939–946
|
38 |
Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000). Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J, 78(6): 3260–3274
|
39 |
Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiements. Nat Methods, 2: 801
|
40 |
Van Munster E B, Kremers G J, Adjobo-Hermans M J, Gadella T W Jr (2005). Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc, 218: 253–262
|
41 |
Verveer P J, Wouters F S, Reynolds A R, Bastiaens P I (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science, 290(5496): 1567–1570
|
42 |
Victor Ruiz-Velasco S R I (2001). Functional expression and FRET analysis of GFP fused to G-protein subunits in rat sympthetic neurons. J Physiol, 537(3): 679–692
|
43 |
Wallrabe H, Periasamy A (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol, 16(1): 19–27
|
44 |
Yeh E T H (2009). SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem, 284(13): 8223–8227
|
/
〈 |
|
〉 |