REVIEW

Quantitative analysis of FRET assay in biology New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade

  • Yan LIU ,
  • Yang SONG ,
  • Ling JIANG ,
  • Jiayu LIAO
Expand
  • Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA

Received date: 24 May 2011

Accepted date: 20 Jun 2011

Published date: 01 Feb 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Förster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro and in vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Km, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.

Cite this article

Yan LIU , Yang SONG , Ling JIANG , Jiayu LIAO . Quantitative analysis of FRET assay in biology New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade[J]. Frontiers in Biology, 2012 , 7(1) : 57 -64 . DOI: 10.1007/s11515-011-1164-0

1
Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009). Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol, 85(1): 287–297

DOI PMID

2
Andreou A M, Tavernarakis N (2009). SUMOylation and cell signalling. Biotechnol J, 4(12): 1740–1752

DOI PMID

3
Bendix P M, Pedersen M S, Stamou D (2009). Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci USA, 106(30): 12341–12346

DOI PMID

4
Bücher H, Drexhage K H, Fleck M, Kuhn H, Möbius D, Schäfer F P, Sondermann J, Sperling W, Tillmann P, Wiegand J (1967). Controlled transfer of excitation energy through thin layers. Mol Cryst, 2(3): 199–230

DOI

5
Cheng A K H, Su H, Wang Y A, Yu H Z (2009). Aptamer-based detection of detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem, 81(15): 6130–6139

6
Dams G, Van Acker K, Gustin E, Vereycken I, Bunkens L, Holemans P, Smeulders L, Clayton R, Ohagen A, Hertogs K (2007). A time-resolved fluorescence assay to identify small-molecule inhibitors of HIV-1 fusion. J Biomol Screen, 12(6): 865–874

DOI PMID

7
dos Remedios C G, Moens P D (1995). Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol, 115(2): 175–185

DOI PMID

8
Eis P S, Olson M C, Takova T, Curtis M L, Olson S M, Vener T I, Ip H S, Vedvik K L, Bartholomay C T, Allawi H T, Ma W P, Hall J G, Morin M D, Rushmore T H, Lyamichev V I, Kwiatkowski R W (2001). An invasive cleavage assay for direct quantitation of specific RNAs. Nat Biotechnol, 19(7): 673–676

9
Elangovan M, Wallrabe H, Chen Y, Day R N, Barroso M, Periasamy A (2003). Characterization of one and two photon excitation fluorescence resonance energy transfer microscopy. Methods, 29: 58–73

PMID

10
Förster T (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys, 437(1–2): 55–75

DOI

11
Gambin Y, Deniz A A (2010). Multicolor single-molecule FRET to explore protein folding and binding. Mol Biosyst, 6(9): 1540–1547

DOI PMID

12
Gareau J R, Lima C D (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12): 861–871

DOI PMID

13
Gordon G W, Berry G, Liang X H, Levine B, Herman B (1998), Quantitative fluorescence resonance energy transfer measurements using fluroescnece miscroscop. Biophys J, 74: 2702–2713

PMID

14
Haugland R P, Yguerabide J, Stryer L (1969). Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci USA, 63(1): 23–30

DOI PMID

15
Hires S A, Zhu Y, Tsien R Y (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA, 105(11): 4411–4416

DOI PMID

16
Johnson E S (2004). Protein modification by SUMO. Annu Rev Biochem, 73(1): 355–382

DOI PMID

17
Kam Z, Volberg T, Geiger B (1995). Mapping of adherens junction components using microscopic resonance energy transfer imaging. J Cell Sci, 108(Pt 3): 1051–1062

PMID

18
Kenworthy A K (2001). Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods, 24(3): 289–296

DOI PMID

19
Lam A D, Ismail S, Wu R, Yizhar O, Passmore D R, Ernst S A, Stuenkel E L (2010). Mapping dynamic protein interactions to insulin secretory granule behavior with TIRF-FRET. Biophys J, 99(4): 1311–1320

DOI PMID

20
Lu S, Wang Y (2010). Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy. Clin Cancer Res, 16(15): 3822–3824

DOI PMID

21
Mahajan N P, Linder K, Berry G, Gordon G W, Heim R, Herman B (1998). Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol, 16(6): 547–552

DOI PMID

22
Martin S F, Tatham M H, Hay R T, Samuel I D (2008). Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci, 17(4): 777–784

DOI PMID

23
Mehta K, Hoppe A D, Kainkaryam R, Woolf P J, Linderman J J (2009). A computational approach to inferring cellular protein-binding affinities from quantitative fluorescence resonance energy transfer imaging. Proteomics, 9(23): 5371–5383

DOI PMID

24
Merchant K A, Best R B, Louis J M, Gopich I V, Eaton W A (2007). Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci USA, 104(5): 1528–1533

DOI PMID

25
Nguyen A W, Daugherty P S (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 23(3): 355–360

DOI PMID

26
Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J, 95(6): 2976–2988

DOI PMID

27
Peter M, Ameer-Beg S M, Hughes M K, Keppler M D, Prag S, Marsh M, Vojnovic B, Ng T (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J, 88(2): 1224–1237

DOI PMID

28
Prasuhn D E, Feltz A, Blanco-Canosa J B, Susumu K, Stewart M H, Mei B C, Yakovlev A V, Loukov C, Mallet J M, Oheim M, Dawson P E, Medintz I L (2010). Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano, 4(9): 5487–5497

DOI PMID

29
Reverter D, Lima C D, (2006). Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol, 13(12): 1060–1068

DOI PMID

29
Saucerman J J, Zhang J, Martin J C, Peng L X, Stenbit A E, Tsien R Y, McCulloch A D (2006). Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA, 103(34): 12923–12928

DOI PMID

29
Shen L, Tatham M H, Dong C, Zagórska A, Naismith J H, Hay R T (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol, 13(12): 1069–1077

DOI PMID

30
Song Y, Madahar V, Liao J (2011). Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng, 39(4): 1224–1234

DOI PMID

31
Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104

DOI PMID

32
Stryer L (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem, 47(1): 819–846

DOI PMID

33
Stryer L R P H, Haugland R P (1967). Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA, 58(2): 719–726

DOI PMID

34
Suzuki Y (2000). Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Methods, 22(4): 355–363

DOI PMID

35
Szöllosi J, Nagy P, Sebestyén Z, Damjanovicha S, Park J W, Mátyus L (2002). Application of fluorescence resonance engergy transfer for mapping biological membranes. Rev Mol Biotechnol, 82: 251–266

36
Tatham M H, Kim S, Yu B, Jaffray E, Song J, Zheng J, Rodriguez M S, Hay R T, Chen Y (2003). Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry, 42(33): 9959–9969

DOI PMID

37
Tron L, Szöllósi J, Damjanovich S, Helliwell S H, Arndt-Jovin D J, Jovin T M (1984). Flow cytometric measurment of FRET on cell surfaces. Biophys J, 45: 939–946

DOI PMID

38
Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000). Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J, 78(6): 3260–3274

DOI PMID

39
Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiements. Nat Methods, 2: 801

DOI PMID

40
Van Munster E B, Kremers G J, Adjobo-Hermans M J, Gadella T W Jr (2005). Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc, 218: 253–262

DOI PMID

41
Verveer P J, Wouters F S, Reynolds A R, Bastiaens P I (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science, 290(5496): 1567–1570

DOI PMID

42
Victor Ruiz-Velasco S R I (2001). Functional expression and FRET analysis of GFP fused to G-protein subunits in rat sympthetic neurons. J Physiol, 537(3): 679–692

43
Wallrabe H, Periasamy A (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol, 16(1): 19–27

DOI PMID

44
Yeh E T H (2009). SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem, 284(13): 8223–8227

DOI PMID

Outlines

/