Quantitative analysis of FRET assay in biology
Yan LIU, Yang SONG, Ling JIANG, Jiayu LIAO
Quantitative analysis of FRET assay in biology
Förster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro and in vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Km, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.
quantitative FRET analysis / protein affinity determination / kinetics analysis
[1] |
Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009). Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol, 85(1): 287–297
CrossRef
Pubmed
Google scholar
|
[2] |
Andreou A M, Tavernarakis N (2009). SUMOylation and cell signalling. Biotechnol J, 4(12): 1740–1752
CrossRef
Pubmed
Google scholar
|
[3] |
Bendix P M, Pedersen M S, Stamou D (2009). Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci USA, 106(30): 12341–12346
CrossRef
Pubmed
Google scholar
|
[4] |
Bücher H, Drexhage K H, Fleck M, Kuhn H, Möbius D, Schäfer F P, Sondermann J, Sperling W, Tillmann P, Wiegand J (1967). Controlled transfer of excitation energy through thin layers. Mol Cryst, 2(3): 199–230
CrossRef
Google scholar
|
[5] |
Cheng A K H, Su H, Wang Y A, Yu H Z (2009). Aptamer-based detection of detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem, 81(15): 6130–6139
|
[6] |
Dams G, Van Acker K, Gustin E, Vereycken I, Bunkens L, Holemans P, Smeulders L, Clayton R, Ohagen A, Hertogs K (2007). A time-resolved fluorescence assay to identify small-molecule inhibitors of HIV-1 fusion. J Biomol Screen, 12(6): 865–874
CrossRef
Pubmed
Google scholar
|
[7] |
dos Remedios C G, Moens P D (1995). Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol, 115(2): 175–185
CrossRef
Pubmed
Google scholar
|
[8] |
Eis P S, Olson M C, Takova T, Curtis M L, Olson S M, Vener T I, Ip H S, Vedvik K L, Bartholomay C T, Allawi H T, Ma W P, Hall J G, Morin M D, Rushmore T H, Lyamichev V I, Kwiatkowski R W (2001). An invasive cleavage assay for direct quantitation of specific RNAs. Nat Biotechnol, 19(7): 673–676
|
[9] |
Elangovan M, Wallrabe H, Chen Y, Day R N, Barroso M, Periasamy A (2003). Characterization of one and two photon excitation fluorescence resonance energy transfer microscopy. Methods, 29: 58–73
Pubmed
|
[10] |
Förster T (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys, 437(1–2): 55–75
CrossRef
Google scholar
|
[11] |
Gambin Y, Deniz A A (2010). Multicolor single-molecule FRET to explore protein folding and binding. Mol Biosyst, 6(9): 1540–1547
CrossRef
Pubmed
Google scholar
|
[12] |
Gareau J R, Lima C D (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12): 861–871
CrossRef
Pubmed
Google scholar
|
[13] |
Gordon G W, Berry G, Liang X H, Levine B, Herman B (1998), Quantitative fluorescence resonance energy transfer measurements using fluroescnece miscroscop. Biophys J, 74: 2702–2713
Pubmed
|
[14] |
Haugland R P, Yguerabide J, Stryer L (1969). Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci USA, 63(1): 23–30
CrossRef
Pubmed
Google scholar
|
[15] |
Hires S A, Zhu Y, Tsien R Y (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA, 105(11): 4411–4416
CrossRef
Pubmed
Google scholar
|
[16] |
Johnson E S (2004). Protein modification by SUMO. Annu Rev Biochem, 73(1): 355–382
CrossRef
Pubmed
Google scholar
|
[17] |
Kam Z, Volberg T, Geiger B (1995). Mapping of adherens junction components using microscopic resonance energy transfer imaging. J Cell Sci, 108(Pt 3): 1051–1062
Pubmed
|
[18] |
Kenworthy A K (2001). Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods, 24(3): 289–296
CrossRef
Pubmed
Google scholar
|
[19] |
Lam A D, Ismail S, Wu R, Yizhar O, Passmore D R, Ernst S A, Stuenkel E L (2010). Mapping dynamic protein interactions to insulin secretory granule behavior with TIRF-FRET. Biophys J, 99(4): 1311–1320
CrossRef
Pubmed
Google scholar
|
[20] |
Lu S, Wang Y (2010). Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy. Clin Cancer Res, 16(15): 3822–3824
CrossRef
Pubmed
Google scholar
|
[21] |
Mahajan N P, Linder K, Berry G, Gordon G W, Heim R, Herman B (1998). Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol, 16(6): 547–552
CrossRef
Pubmed
Google scholar
|
[22] |
Martin S F, Tatham M H, Hay R T, Samuel I D (2008). Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci, 17(4): 777–784
CrossRef
Pubmed
Google scholar
|
[23] |
Mehta K, Hoppe A D, Kainkaryam R, Woolf P J, Linderman J J (2009). A computational approach to inferring cellular protein-binding affinities from quantitative fluorescence resonance energy transfer imaging. Proteomics, 9(23): 5371–5383
CrossRef
Pubmed
Google scholar
|
[24] |
Merchant K A, Best R B, Louis J M, Gopich I V, Eaton W A (2007). Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci USA, 104(5): 1528–1533
CrossRef
Pubmed
Google scholar
|
[25] |
Nguyen A W, Daugherty P S (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 23(3): 355–360
CrossRef
Pubmed
Google scholar
|
[26] |
Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J, 95(6): 2976–2988
CrossRef
Pubmed
Google scholar
|
[27] |
Peter M, Ameer-Beg S M, Hughes M K, Keppler M D, Prag S, Marsh M, Vojnovic B, Ng T (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J, 88(2): 1224–1237
CrossRef
Pubmed
Google scholar
|
[28] |
Prasuhn D E, Feltz A, Blanco-Canosa J B, Susumu K, Stewart M H, Mei B C, Yakovlev A V, Loukov C, Mallet J M, Oheim M, Dawson P E, Medintz I L (2010). Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano, 4(9): 5487–5497
CrossRef
Pubmed
Google scholar
|
[29] |
Reverter D, Lima C D, (2006). Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol, 13(12): 1060–1068
CrossRef
Pubmed
Google scholar
|
[29] |
Saucerman J J, Zhang J, Martin J C, Peng L X, Stenbit A E, Tsien R Y, McCulloch A D (2006). Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA, 103(34): 12923–12928
CrossRef
Pubmed
Google scholar
|
[29] |
Shen L, Tatham M H, Dong C, Zagórska A, Naismith J H, Hay R T (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol, 13(12): 1069–1077
CrossRef
Pubmed
Google scholar
|
[30] |
Song Y, Madahar V, Liao J (2011). Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng, 39(4): 1224–1234
CrossRef
Pubmed
Google scholar
|
[31] |
Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104
CrossRef
Pubmed
Google scholar
|
[32] |
Stryer L (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem, 47(1): 819–846
CrossRef
Pubmed
Google scholar
|
[33] |
Stryer L R P H, Haugland R P (1967). Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA, 58(2): 719–726
CrossRef
Pubmed
Google scholar
|
[34] |
Suzuki Y (2000). Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Methods, 22(4): 355–363
CrossRef
Pubmed
Google scholar
|
[35] |
Szöllosi J, Nagy P, Sebestyén Z, Damjanovicha S, Park J W, Mátyus L (2002). Application of fluorescence resonance engergy transfer for mapping biological membranes. Rev Mol Biotechnol, 82: 251–266
|
[36] |
Tatham M H, Kim S, Yu B, Jaffray E, Song J, Zheng J, Rodriguez M S, Hay R T, Chen Y (2003). Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry, 42(33): 9959–9969
CrossRef
Pubmed
Google scholar
|
[37] |
Tron L, Szöllósi J, Damjanovich S, Helliwell S H, Arndt-Jovin D J, Jovin T M (1984). Flow cytometric measurment of FRET on cell surfaces. Biophys J, 45: 939–946
CrossRef
Pubmed
Google scholar
|
[38] |
Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000). Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J, 78(6): 3260–3274
CrossRef
Pubmed
Google scholar
|
[39] |
Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiements. Nat Methods, 2: 801
CrossRef
Pubmed
Google scholar
|
[40] |
Van Munster E B, Kremers G J, Adjobo-Hermans M J, Gadella T W Jr (2005). Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc, 218: 253–262
CrossRef
Pubmed
Google scholar
|
[41] |
Verveer P J, Wouters F S, Reynolds A R, Bastiaens P I (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science, 290(5496): 1567–1570
CrossRef
Pubmed
Google scholar
|
[42] |
Victor Ruiz-Velasco S R I (2001). Functional expression and FRET analysis of GFP fused to G-protein subunits in rat sympthetic neurons. J Physiol, 537(3): 679–692
|
[43] |
Wallrabe H, Periasamy A (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol, 16(1): 19–27
CrossRef
Pubmed
Google scholar
|
[44] |
Yeh E T H (2009). SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem, 284(13): 8223–8227
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |