RESEARCH ARTICLE

Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype

  • Bijan Keikhaei 1 ,
  • Pejman Salehi-Fard 1 ,
  • Mostafa Paridar 2 ,
  • Mehraneh Karimzadeh 3 ,
  • Razie Dehghani 4 ,
  • Asma Zamiri 5 ,
  • Vahideh Takhviji , 6
Expand
  • 1. Research Center for Thalassemia and Hemoglobinopathy, Health Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 2. Deputy of Management and Resources Development, Ministry of Health and Medical Education, Tehran, Iran
  • 3. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 4. Pediatric Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 5. School of Medicine, Gorgan University of Medical Sciences, Gorgan, Iran
  • 6. Laboratory Hematology and Blood Banking, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran

Received date: 16 Jun 2018

Accepted date: 10 Sep 2018

Published date: 30 Nov 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: Thalassemia is known as the commonest monogenic disorder with an imbalanced rate of globin chains production of adult hemoglobin. Despite the available information about the thalassemia etiology, its phenotype varies from each patient to another. This study aimed to evaluate the hematological parameters of patients with the same -α3.7 homozygote and heterozygote genotypes to amend screening programs.

METHODS: In this observational study, we evaluated 1301 thalassemia suspected patients who referred to the Thalassemia and Hemoglobinopathy Research Center of Ahvaz University of Medical Sciences, Khuzestan, Iran during 2014-2016. According to the genotyping studies, patients divided into 2 groups with -α3.7/aa (n = 646) and -α3.7/-α3.7 (n = 181) genotypes. Thereafter, distribution of hematological parameters evaluated in both groups.

RESULTS: The mean age in heterozygous and homozygous groups was 25.7±4.5 and 26±4.4 years old, respectively. The degree of anemia was considerably varied in patients with the same genotype. MCV, RBC and MCH showed a wide distribution in patients.

CONCLUSION: The findings presented here suggest that other molecular mechanisms along with α-globin gene mutations could be involved in determining the phenotypes of alpha thalassemia patients.

Cite this article

Bijan Keikhaei , Pejman Salehi-Fard , Mostafa Paridar , Mehraneh Karimzadeh , Razie Dehghani , Asma Zamiri , Vahideh Takhviji . Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype[J]. Frontiers in Biology, 2018 , 13(6) : 469 -474 . DOI: 10.1007/s11515-018-1522-2

Acknowledgments

The authors would like to thank all of the research staff at Thalassemia and Hemoglobinopathy Research Center of Ahvaz University of Medical Sciences who helped to recruit patients and perform the experiments.

Ethics approval and consent to participate

The protocol is reviewed and approved by the Medical Ethics Committee of Ahvaz Jundishahpur University of Medical Sciences. All subjects gave informed consent to participate in the study. The authors declare that they have no conflict of interest.
1
Alibakhshi R, Mehrabi M, Omidniakan L, Shafieenia S (2015). The spectrum of a-thalassemia mutations in Kermanshah Province, West Iran. Hemoglobin, 39(6): 403–406

DOI PMID

2
Cao A, Kan Y W (2013). The prevention of thalassemia. Cold Spring Harb Perspect Med, 3(2): a011775

DOI PMID

3
Coelho A, Picanço I, Seuanes F, Seixas M T, Faustino P (2010). Novel large deletions in the human a-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol Dis, 45(2): 147–153

DOI PMID

4
De Gobbi M, Viprakasit V, Hughes J R, Fisher C, Buckle V J, Ayyub H, Gibbons R J, Vernimmen D, Yoshinaga Y, de Jong P, Cheng J F, Rubin E M, Wood W G, Bowden D, Higgs D R (2006). A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science, 312(5777): 1215–1217

DOI PMID

5
Dehbozorgian J, Moghadam M, Daryanoush S, Haghpanah S, Imani Fard J, Aramesh A, Shahsavani A, Karimi M (2015). Distribution of alpha-thalassemia mutations in Iranian population. Hematology, 20(6): 359–362

DOI PMID

6
Derakhshan S M, Khaniani M S, Afkhami F, PourFeizi A H (2016). Molecular study of deletional and nondeletional mutations on the a-globin locus in the Azeri population of Northwestern Iran. Hemoglobin, 40(5): 319–322

DOI PMID

7
Eftekhari H, Tamaddoni A, Mahmoudi Nesheli H, Vakili M, Sedaghat S, Banihashemi A, Azizi M, Youssefi Kamangar R, Akhavan-Niaki H (2017). A comprehensive molecular investigation of a-thalassemia in an Iranian cohort from different provinces of North Iran. Hemoglobin, 41(1): 32–37

DOI PMID

8
Farashi S, Harteveld C L (2017). Molecular basis of a-thalassemia. Blood Cells Mol Dis

PMID

9
Galanello R, Cao A (2011). Gene test review. Alpha-thalassemia. Genet Med, 13(2): 83–88

DOI PMID

10
Harteveld C L, Higgs D R (2010). a-thalassaemia. Orphanet J Rare Dis, 5(1): 13

DOI PMID

11
HiggsD R, Gibbons R J ( 2010). The molecular basis of -thalassemia: a model for understanding human molecular genetics. Hematology/Oncology Clinics, 24(6): 1033–1054

12
Higgs D R, Wood W G (2008). Long-range regulation of a globin gene expression during erythropoiesis. Curr Opin Hematol, 15(3): 176–183

DOI PMID

13
Ilan L, Osman F, Namer L S, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, Banai Y, Kaempfer R (2017). PKR activation and eIF2a phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res, 27(5): 688–704

DOI PMID

14
Kanavakis E, Papassotiriou I, Karagiorga M, Vrettou C, Metaxotou-Mavrommati A, Stamoulakatou A, Kattamis C, Traeger-Synodinos J (2000). Phenotypic and molecular diversity of haemoglobin H disease: a Greek experience. Br J Haematol, 111(3): 915–923

PMID

15
Keikhaei B, Slehi-Fard P, Shariati G, Khosravi A (2018). Genetics of Iranian Alpha-Thalassemia Patients: A Comprehensive Original Study. Biochem Genet,

DOI PMID

16
Liu Y T, Old J M, Miles K, Fisher C A, Weatherall D J, Clegg J B (2000). Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol, 108(2): 295–299

DOI PMID

17
Musallam K M ( 2013). Non-transfusion-dependent thalassemias. Haematologica, 98(6): 833–844

18
Onay H, Aykut A, Karaca E, Durmaz A, Solmaz A E, Çoğulu Ö, Aydınok Y, Vergin C, Özkınay F (2015). Molecular spectrum of a-globin gene mutations in the Aegean region of Turkey: first observation of three a-globin gene mutations in the Turkish population. Int J Hematol, 102(1): 1–6

DOI PMID

19
Ribeiro D,Sonati M ( 2008). Regulation of human alpha-globin gene expression and alpha-thalassemia. Genet Mol Res, 7(4):1045–53

20
Sanger F, Nicklen S, Coulson A R (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74(12): 5463–5467

DOI PMID

21
Satta S, Paglietti M E, Sollaino M C, Barella S, Moi P, Desogus M F, Demartis F R, Manunza L, Origa R (2017). Changes in HbA2 and HbF in alpha thalassemia carriers with KLF1 mutation. Blood Cells Mol Dis, 64: 30–32

DOI PMID

22
Singer S T (2009). Variable clinical phenotypes of a-thalassemia syndromes. Sci World J, 9: 615–625

DOI PMID

23
Sollaino M C, Paglietti M E, Loi D, Congiu R, Podda R, Galanello R (2010). Homozygous deletion of the major alpha-globin regulatory element (MCS-R2) responsible for a severe case of hemoglobin H disease. Blood, 116(12): 2193–2194

DOI PMID

24
Surapolchai P, Chuansumrit A, Sirachainan N, Kadegasem P, Leung K C, So C C (2017). A molecular study on the role of alpha-hemoglobin-stabilizing protein in hemoglobin H disease. Ann Hematol, 96(6): 1005–1014

DOI PMID

25
Tamaddoni A, Hadavi V, Nejad N H, Khosh-Ain A, Siami R, Aghai-Meibodi J, Almadani N, Oberkanins C, Law H Y, Najmabadi H (2009). a-Thalassemia mutation analyses in Mazandaran province, North Iran. Hemoglobin, 33(2): 115–123

DOI PMID

26
Valaei A, Karimipoor M, Kordafshari A, Zeinali S (2018). Molecular Basis of a-Thalassemia in Iran. Iran Biomed J, 22(1): 6–14

PMID

27
Vernimmen D, Marques-Kranc F, Sharpe J A, Sloane-Stanley J A, Wood W G, Wallace H A, Smith A J, Higgs D R (2009). Chromosome looping at the human a-globin locus is mediated via the major upstream regulatory element (HS-40). Blood, 114(19): 4253–4260

DOI PMID

28
Viprakasit V, Kidd A M, Ayyub H, Horsley S, Hughes J, Higgs D R (2003). De novo deletion within the telomeric region flanking the human a globin locus as a cause of a thalassaemia. Br J Haematol, 120(5): 867–875

DOI PMID

29
Wajcman H, Traeger-Synodinos J, Papassotiriou I, Giordano P C, Harteveld C L, Baudin-Creuza V, Old J (2008). Unstable and thalassemic a chain hemoglobin variants: a cause of Hb H disease and thalassemia intermedia. Hemoglobin, 32(4): 327–349

DOI PMID

30
Wu M Y, He Y, Yan J M, Li D Z (2017). A novel selective deletion of the major a-globin regulatory element (MCS-R2) causing a-thalassaemia. Br J Haematol, 176(6): 984–986

DOI PMID

31
Yu L H, Liu D, Cai R, Shang X, Zhang X H, Ma X X, Yan S H, Fang P, Zheng C G, Wei X F, Liu Y H, Zhou T B, Xu X M (2015). Changes in hematological parameters in a-thalassemia individuals co-inherited with erythroid Krüppel-like factor mutations. Clin Genet, 88(1): 56–61

DOI PMID

Outlines

/