REVIEW

Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila

  • Clare H. Scott Chialvo , 1 ,
  • Thomas Werner , 2
Expand
  • 1. Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
  • 2. Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA

Received date: 23 Feb 2018

Accepted date: 15 Mar 2018

Published date: 28 May 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: Evolutionary novelties, be they morphological or biochemical, fascinate both scientists and non-scientists alike. These types of adaptations can significantly impact the biodiversity of the organisms in which they occur. While much work has been invested in the evolution of novel morphological traits, substantially less is known about the evolution of biochemical adaptations.

METHODS: In this review, we present the results of literature searches relating to one such biochemical adaptation: α-amanitin tolerance/resistance in the genus Drosophila.

RESULTS: Amatoxins, including α-amanitin, are one of several toxin classes found in Amanita mushrooms. They act by binding to RNA polymerase II and inhibiting RNA transcription. Although these toxins are lethal to most eukaryotic organisms, 17 mushroom-feeding Drosophila species are tolerant of natural concentrations of amatoxins and can develop in toxic mushrooms. The use of toxic mushrooms allows these species to avoid infection by parasitic nematodes and lowers competition. Their amatoxin tolerance is not due to mutations that would inhibit α-amanitin from binding to RNA polymerase II. Furthermore, the mushroom-feeding flies are able to detoxify the other toxin classes that occur in their mushroom hosts. In addition, resistance has evolved independently in several D. melanogaster strains. Only one of the strains exhibits resistance due to mutations in the target of the toxin.

CONCLUSIONS: Given our current understanding of the evolutionary relationships among the mushroom-feeding flies, it appears that amatoxin tolerance evolved multiple times. Furthermore, independent lines of evidence suggest that multiple mechanisms confer α-amanitin tolerance/resistance in Drosophila.

Cite this article

Clare H. Scott Chialvo , Thomas Werner . Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Frontiers in Biology, 2018 , 13(2) : 91 -102 . DOI: 10.1007/s11515-018-1487-1

Acknowledgments

This review was supported by an NSF grant Laura Reed and CSC and an NSF grant DEB-1737877 to TW. We would like to thank Kelly Dyer and Laura Reed for constructive discussions regarding the natural history of mushroom-feeding Drosophila, toxin tolerance, and the evolutionary relationships among these species. We would also like to thank Prajakta Kokate, Pablo Chialvo, and members of the Reed Laboratory for critical reviews of the manuscript.

Compliance with ethics guidelines

Authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by the authors.
1
Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride J M, Bergé J B (2004). Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem, 271(7): 1250–1257

DOI PMID

2
Begun D J, Whitley P (2000). Genetics of α-amanitin resistance in a natural population of Drosophila melanogaster. Heredity (Edinb), 85(Pt 2): 184–190

DOI PMID

3
Berger K J, Guss D A (2005a). Mycotoxins revisited: Part I. J Emerg Med, 28(1): 53–62

DOI PMID

4
Berger K J, Guss D A (2005b). Mycotoxins revisited: Part II. J Emerg Med, 28(2): 175–183

DOI PMID

5
Beutler J A, Der Marderosian A H (1981). Chemical variation in Amanita. J Nat Prod, 44(4): 422–431

DOI

6
Bosman C K, Berman L, Isaacson M, Wolfowitz B, Parkes J (1965). Mushroom poisoning caused by Amanita pantherina. Report of 4 cases. S Afr Med J, 39(39): 983–986

PMID

7
Bray M J, Werner T, Dyer K A (2014). Two genomic regions together cause dark abdominal pigmentation in Drosophila tenebrosa. Heredity (Edinb), 112(4): 454–462

DOI PMID

8
Bresinsky A, Besl H (1990) A color atlas of poisonous fungi: a handbook for pharmacists, doctors and biologists. Wolfe, Wurzburg, Germany, 295 pp.

9
Broeckhoven C, Diedericks G, Hui C, Makhubo B G, Mouton P L (2016). Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards. Evolution, 70(11): 2647–2656

DOI PMID

10
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J, Rumack B H, Heard S E (2007). 2006 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS). Clin Toxicol (Phila), 45(8): 815–917

DOI PMID

11
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Dart R C (2011). 2010 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 28th Annual Report. Clin Toxicol (Phila), 49(10): 910–941

DOI PMID

12
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Giffin S L (2009). 2008 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 26th Annual Report. Clin Toxicol (Phila), 47(10): 911–1084

DOI PMID

13
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Giffin S L (2010). 2009 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th Annual Report. Clin Toxicol (Phila), 48(10): 979–1178

DOI PMID

14
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Heard S E, and the American Association of Poison Control Centers (2008). 2007 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 25th Annual Report. Clin Toxicol (Phila), 46(10): 927–1057

DOI PMID

15
Bronstein A C, Spyker D A, Cantilena L R Jr, Rumack B H, Dart R C (2012). 2011 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 29th Annual Report. Clin Toxicol (Phila), 50(10): 911–1164

DOI PMID

16
Broussard C N, Aggarwal A, Lacey S R, Post A B, Gramlich T, Henderson J M, Younossi Z M (2001). Mushroom poisoning--from diarrhea to liver transplantation. Am J Gastroenterol, 96(11): 3195–3198

PMID

17
Brun A, Cuany A, Le Mouel T, Berge J, Amichot M (1996). Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem Mol Biol, 26(7): 697–703

DOI PMID

18
Bushnell D A, Cramer P, Kornberg R D (2002). Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci USA, 99(3): 1218–1222

DOI PMID

19
Buxton P A (1960). British Diptera associated with fungi. III. Flies of all families reared from about 150 species of fungi. Entomol Mon Mag, 96: 61–94

20
Chambers T C, McAvoy E M, Jacobs J W, Eilon G (1990). Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem, 265(13): 7679–7686

PMID

21
Chang S T, Miles P G (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Raton, FL, 451 pp.

22
Chilton W S, Ott J (1976). Toxic metabolites of Amanita pantherina, A. cothurnata, A. muscaria and other Amanita species. Lloydia, 39(2-3): 150–157

PMID

23
Coyne J A, Orr H A (2004) Speciation. Sinauer Associates, Inc., Sunderland, Massachusetts, 545 pp.

24
Daborn P J, Lumb C, Boey A, Wong W, Ffrench-Constant R H, Batterham P (2007). Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol, 37(5): 512–519

DOI PMID

25
Debban C L, Dyer K A (2013). No evidence for behavioural adaptations to nematode parasitism by the fly Drosophila putrida. J Evol Biol, 26(8): 1646–1654

DOI PMID

26
Diaz J H (2005). Syndromic diagnosis and management of confirmed mushroom poisonings. Crit Care Med, 33(2): 427–436

DOI PMID

27
Duensing A, Liu Y, Spardy N, Bartoli K, Tseng M, Kwon J A, Teng X, Duensing S (2007). RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene, 26(2): 215–223

DOI PMID

28
Dyer K A, Bray M J, Lopez S J (2013). Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea. Mol Ecol, 22(1): 157–169

DOI PMID

29
Dyer K A, Burke C, Jaenike J (2011). Wolbachia-mediated persistence of mtDNA from a potentially extinct species. Mol Ecol, 20(13): 2805–2817

DOI PMID

30
Dyer K A, Charlesworth B, Jaenike J (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci USA, 104(5): 1587–1592

DOI PMID

31
Dyer K A, Jaenike J (2005). Evolutionary dynamics of a spatially structured host-parasite association: Drosophila innubila and male-killing Wolbachia. Evolution, 59(7): 1518–1528

DOI PMID

32
Emlen D J (2000). Integrating development with evolution: a case study with beetle horns: results from studies of the mechanisms of horn development shed new light on our understanding of beetle horn evolution. BioSciences, 50(5): 403–418

DOI

33
Enjalbert F, Gallion C, Jehl F, Monteil H (1993). Toxin content, phallotoxin and amatoxin composition of Amanita phalloides tissues. Toxicon, 31(6): 803–807

DOI PMID

34
Enjalbert F, Rapior S, Nouguier-Soulé J, Guillon S, Amouroux N, Cabot C (2002). Treatment of amatoxin poisoning: 20-year retrospective analysis. J Toxicol Clin Toxicol, 40(6): 715–757

DOI PMID

35
Erden A, Esmeray K, Karagöz H, Karahan S, Gümüşçü H H, Başak M, Cetinkaya A, Avcı D, Poyrazoğlu O K (2013). Acute liver failure caused by mushroom poisoning: a case report and review of the literature. Int Med Case Rep J, 6: 85–90

PMID

36
Escudié L, Francoz C, Vinel J P, Moucari R, Cournot M, Paradis V, Sauvanet A, Belghiti J, Valla D, Bernuau J, Durand F (2007). Amanita phalloides poisoning: reassessment of prognostic factors and indications for emergency liver transplantation. J Hepatol, 46(3): 466–473

DOI PMID

37
Faulstich H (1980). Mushroom poisoning. Lancet, 2(8198): 794–795

DOI PMID

38
Faulstich H, Cochet-Meilhac M (1976). Amatoxins in edible mushrooms. FEBS Lett, 64(1): 73–75

DOI PMID

39
Festucci-Buselli R A, Carvalho-Dias A S, de Oliveira-Andrade M, Caixeta-Nunes C, Li H M, Stuart J J, Muir W, Scharf M E, Pittendrigh B R (2005). Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol Biol, 14(1): 69–77

DOI PMID

40
Galtier N, Nabholz B, Glémin S, Hurst G D (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol, 18(22): 4541–4550

DOI PMID

41
Garcia J, Carvalho A T, Dourado D F, Baptista P, de Lourdes Bastos M, Carvalho F (2014). New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes. J Mol Graph Model, 51: 120–127

DOI PMID

42
Gleixner E M, Canaud G, Hermle T, Guida M C, Kretz O, Helmstädter M, Huber T B, Eimer S, Terzi F, Simons M (2014). V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Reports, 8(1): 10–19

DOI PMID

43
Greenleaf A L, Borsett L M, Jiamachello P F, Coulter D E (1979). α-amanitin-resistant D. melanogaster with an altered RNA polymerase II. Cell, 18(3): 613–622

DOI PMID

44
Grimaldi D (1985). Niche separation and competitive coexistence in mycophagous Drosophila (Diptera: Drosophilidae). Proc Entomol Soc Wash, 87: 498–511

45
Grimaldi D, Jaenike J (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65(4): 1113–1120

DOI

46
Hackman W, Meinander M (1979). Diptera feeding as larvae on macrofungi in Finland. Ann Zool Fenn, 16: 50–83

47
Hallen H E, Adams G C, Eicker A, Jäger A K (2002). Amatoxins and phallotoxins in indigenous and introduced South African Amanita species. S Afr J Bot, 68(3): 322–326

DOI

48
Hallen H E, Luo H, Scott-Craig J S, Walton J D (2007). Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci USA, 104(48): 19097–19101

DOI PMID

49
Hatadani L M, McInerney J O, de Medeiros H F, Junqueira A C, de Azeredo-Espin A M, Klaczko L B (2009). Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera: Drosophilidae). Mol Phylogenet Evol, 51(3): 595–600

DOI PMID

50
Heard S B, Hauser D L (1995). Key evolutionary innovations and their ecological mechanisms. Hist Biol, 10(2): 151–173

DOI

51
Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone A M, Turlapati L, Zichner T, Zhu D, Lyman R F, Magwire M M, Blankenburg K, Carbone M A, Chang K, Ellis L L, Fernandez S, Han Y, Highnam G, Hjelmen C E, Jack J R, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann S M, Ruth R, Saada N, Warner C, Williams A, Wu Y Q, Yamamoto A, Zhang Y, Zhu Y, Anholt R R, Korbel J O, Mittelman D, Muzny D M, Gibbs R A, Barbadilla A, Johnston J S, Stone E A, Richards S, Deplancke B, Mackay T F (2014). Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res, 24(7): 1193–1208

DOI PMID

52
Humphreys D P, Rundle H D, Dyer K A (2016). Patterns of reproductive isolation in the Drosophila subquinariacomplex: can reinforced premating isolation cascade to other species? Curr Zool, 62(2): 183–191

DOI PMID

53
Hurst G D D, Jiggins F M (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci, 272(1572): 1525–1534

DOI PMID

54
Izumitani H F, Kusaka Y, Koshikawa S, Toda M J, Katoh T (2016). Phylogeography of the subgenus Drosophila (Diptera: Drosophilidae): evolutionary history of faunal divergence between the old and the new worlds. PLoS One, 11(7): e0160051

DOI PMID

55
Jaenike J (1978a). Host selection by mycophagous Drosophila. Ecology, 59(6): 1286–1288

DOI

56
Jaenike J (1978b). Resource predictability and niche breadth in the Drosophila quinaria species group. Evolution, 32(3): 676–678

DOI PMID

57
Jaenike J (1985a). Genetic and environmental determinants of food preference in Drosophila tripunctata. Evolution, 39(2): 362–369

DOI PMID

58
Jaenike J (1985b). Parasite pressure and the evolution of amanitin tolerance in Drosophila. Evolution, 39(6): 1295–1301

DOI PMID

59
Jaenike J (1986). Genetic complexity of host-selection behavior in Drosophila. Proc Natl Acad Sci USA, 83(7): 2148–2151

DOI PMID

60
Jaenike J (1987). Genetics of oviposition-site preference in Drosophila tripunctata. Heredity (Edinb), 59(Pt 3): 363–369

DOI PMID

61
Jaenike J (1989). Genetic population structure of Drosophila tripunctata: Patterns of varitation and covariation of traits affecting resource use. Evolution, 43(7): 1467–1482

PMID

62
Jaenike J (1992). Mycophagous Drosophila and their nematode parasites. Am Nat, 139(5): 893–906

DOI

63
Jaenike J, Dyer K A, Cornish C, Minhas M S (2006). Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol, 4(10): e325

DOI PMID

64
Jaenike J, Grimaldi D (1983). Genetic variation for host preference within and among populations of Drosophila tripunctata. Evolution, 37(5): 1023–1033

DOI PMID

65
Jaenike J, Grimaldi D A, Sluder A E, Greenleaf A L (1983). a-Amanitin tolerance in mycophagous Drosophila. Science, 221(4606): 165–167

DOI PMID

66
Jaenike J, James A C (1991). Aggregation and the coexistence of mycophagous Drosophila. J Anim Ecol, 60(3): 913–928

DOI

67
Jaenike J, Perlman S J (2002). Ecology and evolution of host-parasite associations: mycophagous Drosophila and their parasitic nematodes. Am Nat, 160(Suppl 4): S23–S39

PMID

68
Jaenike J, Selander R K (1979). Ecological generalism in Drosophila falleni: genetic evidence. Evolution, 33(2): 741–748

DOI PMID

69
Kalač P (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem, 113(1): 9–16

DOI

70
Kalač P (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric, 93(2): 209–218

DOI PMID

71
Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou A G, Savakis C (2012). Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One, 7(6): e40296

DOI PMID

72
Kaplan C D, Larsson K M, Kornberg R D (2008). The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by α-amanitin. Mol Cell, 30(5): 547–556

DOI PMID

73
Karlson-Stiber C, Persson H (2003). Cytotoxic fungi--an overview. Toxicon, 42(4): 339–349

DOI PMID

74
Kaul T N (2002) Biology and conservation of mushrooms. Science Publishers, Inc., Enfield (NH), USA, 255 pp.

75
Kaya E, Karahan S, Bayram R, Yaykasli K O, Colakoglu S, Saritas A (2015). Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues. Toxicol Ind Health, 31(12): 1172–1177

DOI PMID

76
Kaya E, Yilmaz I, Sinirlioglu Z A, Karahan S, Bayram R, Yaykasli K O, Colakoglu S, Saritas A, Severoglu Z (2013). Amanitin and phallotoxin concentration in Amanita phalloides var. alba mushroom. Toxicon, 76: 225–233

DOI PMID

77
Kijimoto T, Moczek A P, Andrews J (2012). Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc Natl Acad Sci USA, 109(50): 20526–20531

DOI PMID

78
Kim Y C, Guan K L (2015). mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 125(1): 25–32

DOI PMID

79
Kimura M T (1980). Evolution of food preferences in fungus-feeding Drosophila: an ecological study. Evolution, 34(5): 1009–1018

PMID

80
Kimura M T, Toda M J (1989). Food preferences and nematode parasitism in mycophagous Drosophila. Ecol Res, 4(2): 209–218

DOI

81
Kume K, Ikeda M, Miura S, Ito K, Sato K A, Ohmori Y, Endo F, Katagiri H, Ishida K, Ito C, Iwaya T, Nishizuka S S (2016). α-Amanitin Restrains Cancer Relapse from Drug-Tolerant Cell Subpopulations via TAF15. Sci Rep, 6(1): 25895

DOI PMID

82
Lacy R C (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol Entomol, 9(1): 43–54

DOI

83
Lai M W, Klein-Schwartz W, Rodgers G C Jr, Abrams J Y, Haber D A, Bronstein A C, Wruk K M (2006). 2005 Annual Report of the American Association of Poison Control Centers’ national poisoning and exposure database. Clin Toxicol (Phila), 44(6-7): 803–932

DOI PMID

84
Le Goff G, Hilliou F, Siegfried B D, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant R H, Feyereisen R (2006). Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol, 36(8): 674–682

DOI PMID

85
Leathem A M, Purssell R A, Chan V R, Kroeger P D (1997). Renal failure caused by mushroom poisoning. J Toxicol Clin Toxicol, 35(1): 67–75

DOI PMID

86
Li C, Oberlies N H (2005). The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci, 78(5): 532–538

DOI PMID

87
Lindell T J, Weinberg F, Morris P W, Roeder R G, Rutter W J (1970). Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science, 170(3956): 447–449

DOI PMID

88
Litovitz T L, Felberg L, Soloway R A, Ford M, Geller R (1995). 1994 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 13(5): 551–597

DOI PMID

89
Litovitz T L, Felberg L, White S, Klein-Schwartz W (1996). 1995 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 14(5): 487–537

DOI PMID

90
Litovitz T L, Klein-Schwartz W, Caravati E M, Youniss J, Crouch B, Lee S (1999). 1998 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 17(5): 435–487

DOI PMID

91
Litovitz T L, Klein-Schwartz W, Dyer K S, Shannon M, Lee S, Powers M (1998). 1997 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 16(5): 443–497

DOI PMID

92
Litovitz T L, Klein-Schwartz W, Rodgers G C Jr, Cobaugh D J, Youniss J, Omslaer J C, May M E, Woolf A D, Benson B E (2002). 2001 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 20(5): 391–452

DOI PMID

93
Litovitz T L, Klein-Schwartz W, White S, Cobaugh D J, Youniss J, Drab A, Benson B E (2000). 1999 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 18(5): 517–574

DOI PMID

94
Litovitz T L, Klein-Schwartz W, White S, Cobaugh D J, Youniss J, Omslaer J C, Drab A, Benson B E (2001). 2000 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 19(5): 337–395

DOI PMID

95
Litovitz T L, Smilkstein M, Felberg L, Klein-Schwartz W, Berlin R, Morgan J L (1997). 1996 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 15(5): 447–500

DOI PMID

96
Liu Y, Zhang X, Han C, Wan G, Huang X, Ivan C, Jiang D, Rodriguez-Aguayo C, Lopez-Berestein G, Rao P H, Maru D M, Pahl A, He X, Sood A K, Ellis L M, Anderl J, Lu X (2015). TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature, 520(7549): 697–701

DOI PMID

97
Mackay T F, Richards S, Stone E A, Barbadilla A, Ayroles J F, Zhu D, Casillas S, Han Y, Magwire M M, Cridland J M, Richardson M F, Anholt R R, Barrón M, Bess C, Blankenburg K P, Carbone M A, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan J C, Jhangiani S N, Jordan K W, Lara F, Lawrence F, Lee S L, Librado P, Linheiro R S, Lyman R F, Mackey A J, Munidasa M, Muzny D M, Nazareth L, Newsham I, Perales L, Pu L L, Qu C, Ràmia M, Reid J G, Rollmann S M, Rozas J, Saada N, Turlapati L, Worley K C, Wu Y Q, Yamamoto A, Zhu Y, Bergman C M, Thornton K R, Mittelman D, Gibbs R A (2012). The Drosophila melanogaster Genetic Reference Panel. Nature, 482(7384): 173–178

DOI PMID

98
Marciniak B, Łopaczyńska D, Ferenc T (2017). Evaluation of the genotoxicity of alpha-amanitin in mice bone marrow cells. Toxicon, 137: 1–6

DOI PMID

99
Mas A (2005). Mushrooms, amatoxins and the liver. J Hepatol, 42(2): 166–169

DOI PMID

100
Mitchell C L, Latuszek C E, Vogel K R, Greenlund I M, Hobmeier R E, Ingram O K, Dufek S R, Pecore J L, Nip F R, Johnson Z J, Ji X, Wei H, Gailing O, Werner T (2017). a-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One, 12(2): e0173162

DOI PMID

101
Mitchell C L, Saul M C, Lei L, Wei H, Werner T (2014). The mechanisms underlying α-amanitin resistance in Drosophila melanogaster: a microarray analysis. PLoS One, 9(4): e93489

DOI PMID

102
Mitchell C L, Yeager R D, Johnson Z J, D’Annunzio S E, Vogel K R, Werner T (2015). Long-term resistance of Drosophila melanogaster to the mushroom toxin α-amanitin. PLoS One, 10(5): e0127569

DOI PMID

103
Moldenhauer G, Salnikov A V, Lüttgau S, Herr I, Anderl J, Faulstich H (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst, 104(8): 622–634

DOI PMID

104
Morales-Hojas R, Vieira J (2012). Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One, 7(11): e49552

DOI PMID

105
Moshnikova A, Moshnikova V, Andreev O A, Reshetnyak Y K (2013). Antiproliferative effect of pHLIP-amanitin. Biochemistry, 52(7): 1171–1178

DOI PMID

106
Mowry J B, Spyker D A, Cantilena L R Jr, Bailey J E, Ford M (2013). 2012 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 30th Annual Report. Clin Toxicol (Phila), 51(10): 949–1229

DOI PMID

107
Mowry J B, Spyker D A, Cantilena L R Jr, McMillan N, Ford M (2014). 2013 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st Annual Report. Clin Toxicol (Phila), 52(10): 1032–1283

DOI PMID

108
Obodai M, Ferreira I C F R, Fernandes A, Barros L, Mensah D L N, Dzomeku M, Urben A F, Prempeh J, Takli R K (2014). Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules, 19(12): 19532–19548

DOI PMID

109
Perlman S J, Jaenike J (2003). Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution, 57(3): 544–557

DOI PMID

110
Perlman S J, Spicer G S, Shoemaker D D, Jaenike J (2003). Associations between mycophagous Drosophila and their Howardula nematode parasites: a worldwide phylogenetic shuffle. Mol Ecol, 12(1): 237–249

DOI PMID

111
Phillips J P, Willms J, Pitt A (1982). α-amanitin resistance in three wild strains of Drosophila melanogaster. Can J Genet Cytol, 24(2): 151–162

DOI PMID

112
Schluter D (2000) The ecology of adaptive radiation. Oxford University Press Inc., Oxford, New York.

113
Shoemaker D D, Katju V, Jaenike J (1999). Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution, 53(4): 1157–1164

DOI PMID

114
Shorrocks B, Charlesworth P (1980). The distribution and abundance of the British fungal-breeding Drosophila. Ecol Entomol, 5(1): 61–78

DOI

115
Shorrocks B, Wood A M (1973). A preliminary note on the fungus feeding species of Drosophila. J Nat Hist, 7(5): 551–556

DOI

116
Simpson G G (1953) The major features of evolution. Columbia University Press, New York, New York.

117
Spicer G S, Jaenike J (1996). PHYLOGENETIC ANALYSIS OF BREEDING SITE USE AND α-AMANITIN TOLERANCE WITHIN THE DROSOPHILA QUINARIA SPECIES GROUP. Evolution, 50(6): 2328–2337

PMID

118
Stansbury M S, Moczek A P (2014). The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc Biol Sci, 281(1782): 20133333

DOI PMID

119
Stump A D, Jablonski S E, Bouton L, Wilder J A (2011). Distribution and mechanism of α-amanitin tolerance in mycophagous Drosophila (Diptera: Drosophilidae). Environ Entomol, 40(6): 1604–1612

DOI PMID

120
Toledo C V, Barroetaveña C, Fernandes Â, Barros L, Ferreira I C F R (2016). Chemical and antioxidant properties of wild edible mushrooms from native Nothfagus spp. forest, Argentina. Molecules, 21(9): 1201

DOI PMID

121
Tuno N, Takahashi K H, Yamashita H, Osawa N, Tanaka C (2007). Tolerance of Drosophila flies to ibotenic acid poisons in mushrooms. J Chem Ecol, 33(2): 311–317

DOI PMID

122
Tyler V E Jr, Benedict R G, Brady L R, Robbers J E (1966). Occurrence of Amanita toxins in American collections of deadly amanitas. J Pharm Sci, 55(6): 590–593

DOI PMID

123
Vetter J (1998). Toxins of Amanita phalloides. Toxicon, 36(1): 13–24

DOI PMID

124
Walton J D, Hallen-Adams H E, Luo H (2010). Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers, 94(5): 659–664

DOI PMID

125
Watson W A, Litovitz T L, Klein-Schwartz W, Rodgers G C Jr, Youniss J, Reid N, Rouse W G, Rembert R S, Borys D (2004). 2003 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 22(5): 335–404

DOI PMID

126
Watson W A, Litovitz T L, Rodgers G C Jr, Klein-Schwartz W, Reid N, Youniss J, Flanagan A, Wruk K M (2005). 2004 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 23(5): 589–666

DOI PMID

127
Watson W A, Litovitz T L, Rodgers G C Jr, Klein-Schwartz W, Youniss J, Rose S R, Borys D, May M E (2003). 2002 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 21(5): 353–421

DOI PMID

128
Werner T (2017). The Drosophilids of a pristine old-growth northern hardwood forest. Great Lakes Entomol, 50: 68–78

129
Werner T, Jaenike J (2017) Drosophilids of the Midwest and Northeast. River Campus Libraries, University of Rochester, Rochester, NY, 256 pp.

130
Werren J H, Jaenike J (1995). Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity (Edinb), 75(Pt 3): 320–326

DOI PMID

131
Wieland T (1968). Poisonous principles of mushrooms of the genus Amanita. Four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science, 159(3818): 946–952

DOI PMID

132
Wieland T (1983). The toxic peptides from Amanita mushrooms. Int J Pept Protein Res, 22(3): 257–276

DOI PMID

133
Wieland T (1986). Peptides of poisonous Amanita mushrooms. Springer-Verlag, New York, 256 pp.

134
Wieland T, Faulstich H, Fiume L (1978). Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem, 5(3): 185–260

DOI PMID

135
Yocum R R, Simons D M (1977). Amatoxins and phallotoxins in Amanita species of the Northeastern United States. Lloydia, 40: 178–190

Outlines

/