Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila
Clare H. Scott Chialvo, Thomas Werner
Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila
BACKGROUND: Evolutionary novelties, be they morphological or biochemical, fascinate both scientists and non-scientists alike. These types of adaptations can significantly impact the biodiversity of the organisms in which they occur. While much work has been invested in the evolution of novel morphological traits, substantially less is known about the evolution of biochemical adaptations.
METHODS: In this review, we present the results of literature searches relating to one such biochemical adaptation: α-amanitin tolerance/resistance in the genus Drosophila.
RESULTS: Amatoxins, including α-amanitin, are one of several toxin classes found in Amanita mushrooms. They act by binding to RNA polymerase II and inhibiting RNA transcription. Although these toxins are lethal to most eukaryotic organisms, 17 mushroom-feeding Drosophila species are tolerant of natural concentrations of amatoxins and can develop in toxic mushrooms. The use of toxic mushrooms allows these species to avoid infection by parasitic nematodes and lowers competition. Their amatoxin tolerance is not due to mutations that would inhibit α-amanitin from binding to RNA polymerase II. Furthermore, the mushroom-feeding flies are able to detoxify the other toxin classes that occur in their mushroom hosts. In addition, resistance has evolved independently in several D. melanogaster strains. Only one of the strains exhibits resistance due to mutations in the target of the toxin.
CONCLUSIONS: Given our current understanding of the evolutionary relationships among the mushroom-feeding flies, it appears that amatoxin tolerance evolved multiple times. Furthermore, independent lines of evidence suggest that multiple mechanisms confer α-amanitin tolerance/resistance in Drosophila.
Drosophila / mushroom-feeding / biochemical adaptations / mushroom toxins / cyclopeptides / α-amanitin
[1] |
Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride J M, Bergé J B (2004). Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem, 271(7): 1250–1257
CrossRef
Pubmed
Google scholar
|
[2] |
Begun D J, Whitley P (2000). Genetics of α-amanitin resistance in a natural population of Drosophila melanogaster. Heredity (Edinb), 85(Pt 2): 184–190
CrossRef
Pubmed
Google scholar
|
[3] |
Berger K J, Guss D A (2005a). Mycotoxins revisited: Part I. J Emerg Med, 28(1): 53–62
CrossRef
Pubmed
Google scholar
|
[4] |
Berger K J, Guss D A (2005b). Mycotoxins revisited: Part II. J Emerg Med, 28(2): 175–183
CrossRef
Pubmed
Google scholar
|
[5] |
Beutler J A, Der Marderosian A H (1981). Chemical variation in Amanita. J Nat Prod, 44(4): 422–431
CrossRef
Google scholar
|
[6] |
Bosman C K, Berman L, Isaacson M, Wolfowitz B, Parkes J (1965). Mushroom poisoning caused by Amanita pantherina. Report of 4 cases. S Afr Med J, 39(39): 983–986
Pubmed
|
[7] |
Bray M J, Werner T, Dyer K A (2014). Two genomic regions together cause dark abdominal pigmentation in Drosophila tenebrosa. Heredity (Edinb), 112(4): 454–462
CrossRef
Pubmed
Google scholar
|
[8] |
Bresinsky A, Besl H (1990) A color atlas of poisonous fungi: a handbook for pharmacists, doctors and biologists. Wolfe, Wurzburg, Germany, 295 pp.
|
[9] |
Broeckhoven C, Diedericks G, Hui C, Makhubo B G, Mouton P L (2016). Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards. Evolution, 70(11): 2647–2656
CrossRef
Pubmed
Google scholar
|
[10] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J, Rumack B H, Heard S E (2007). 2006 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS). Clin Toxicol (Phila), 45(8): 815–917
CrossRef
Pubmed
Google scholar
|
[11] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Dart R C (2011). 2010 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 28th Annual Report. Clin Toxicol (Phila), 49(10): 910–941
CrossRef
Pubmed
Google scholar
|
[12] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Giffin S L (2009). 2008 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 26th Annual Report. Clin Toxicol (Phila), 47(10): 911–1084
CrossRef
Pubmed
Google scholar
|
[13] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Giffin S L (2010). 2009 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th Annual Report. Clin Toxicol (Phila), 48(10): 979–1178
CrossRef
Pubmed
Google scholar
|
[14] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Green J L, Rumack B H, Heard S E, and the American Association of Poison Control Centers (2008). 2007 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 25th Annual Report. Clin Toxicol (Phila), 46(10): 927–1057
CrossRef
Pubmed
Google scholar
|
[15] |
Bronstein A C, Spyker D A, Cantilena L R Jr, Rumack B H, Dart R C (2012). 2011 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 29th Annual Report. Clin Toxicol (Phila), 50(10): 911–1164
CrossRef
Pubmed
Google scholar
|
[16] |
Broussard C N, Aggarwal A, Lacey S R, Post A B, Gramlich T, Henderson J M, Younossi Z M (2001). Mushroom poisoning--from diarrhea to liver transplantation. Am J Gastroenterol, 96(11): 3195–3198
Pubmed
|
[17] |
Brun A, Cuany A, Le Mouel T, Berge J, Amichot M (1996). Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem Mol Biol, 26(7): 697–703
CrossRef
Pubmed
Google scholar
|
[18] |
Bushnell D A, Cramer P, Kornberg R D (2002). Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci USA, 99(3): 1218–1222
CrossRef
Pubmed
Google scholar
|
[19] |
Buxton P A (1960). British Diptera associated with fungi. III. Flies of all families reared from about 150 species of fungi. Entomol Mon Mag, 96: 61–94
|
[20] |
Chambers T C, McAvoy E M, Jacobs J W, Eilon G (1990). Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem, 265(13): 7679–7686
Pubmed
|
[21] |
Chang S T, Miles P G (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Raton, FL, 451 pp.
|
[22] |
Chilton W S, Ott J (1976). Toxic metabolites of Amanita pantherina, A. cothurnata, A. muscaria and other Amanita species. Lloydia, 39(2-3): 150–157
Pubmed
|
[23] |
Coyne J A, Orr H A (2004) Speciation. Sinauer Associates, Inc., Sunderland, Massachusetts, 545 pp.
|
[24] |
Daborn P J, Lumb C, Boey A, Wong W, Ffrench-Constant R H, Batterham P (2007). Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol, 37(5): 512–519
CrossRef
Pubmed
Google scholar
|
[25] |
Debban C L, Dyer K A (2013). No evidence for behavioural adaptations to nematode parasitism by the fly Drosophila putrida. J Evol Biol, 26(8): 1646–1654
CrossRef
Pubmed
Google scholar
|
[26] |
Diaz J H (2005). Syndromic diagnosis and management of confirmed mushroom poisonings. Crit Care Med, 33(2): 427–436
CrossRef
Pubmed
Google scholar
|
[27] |
Duensing A, Liu Y, Spardy N, Bartoli K, Tseng M, Kwon J A, Teng X, Duensing S (2007). RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene, 26(2): 215–223
CrossRef
Pubmed
Google scholar
|
[28] |
Dyer K A, Bray M J, Lopez S J (2013). Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea. Mol Ecol, 22(1): 157–169
CrossRef
Pubmed
Google scholar
|
[29] |
Dyer K A, Burke C, Jaenike J (2011). Wolbachia-mediated persistence of mtDNA from a potentially extinct species. Mol Ecol, 20(13): 2805–2817
CrossRef
Pubmed
Google scholar
|
[30] |
Dyer K A, Charlesworth B, Jaenike J (2007). Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci USA, 104(5): 1587–1592
CrossRef
Pubmed
Google scholar
|
[31] |
Dyer K A, Jaenike J (2005). Evolutionary dynamics of a spatially structured host-parasite association: Drosophila innubila and male-killing Wolbachia. Evolution, 59(7): 1518–1528
CrossRef
Pubmed
Google scholar
|
[32] |
Emlen D J (2000). Integrating development with evolution: a case study with beetle horns: results from studies of the mechanisms of horn development shed new light on our understanding of beetle horn evolution. BioSciences, 50(5): 403–418
CrossRef
Google scholar
|
[33] |
Enjalbert F, Gallion C, Jehl F, Monteil H (1993). Toxin content, phallotoxin and amatoxin composition of Amanita phalloides tissues. Toxicon, 31(6): 803–807
CrossRef
Pubmed
Google scholar
|
[34] |
Enjalbert F, Rapior S, Nouguier-Soulé J, Guillon S, Amouroux N, Cabot C (2002). Treatment of amatoxin poisoning: 20-year retrospective analysis. J Toxicol Clin Toxicol, 40(6): 715–757
CrossRef
Pubmed
Google scholar
|
[35] |
Erden A, Esmeray K, Karagöz H, Karahan S, Gümüşçü H H, Başak M, Cetinkaya A, Avcı D, Poyrazoğlu O K (2013). Acute liver failure caused by mushroom poisoning: a case report and review of the literature. Int Med Case Rep J, 6: 85–90
Pubmed
|
[36] |
Escudié L, Francoz C, Vinel J P, Moucari R, Cournot M, Paradis V, Sauvanet A, Belghiti J, Valla D, Bernuau J, Durand F (2007). Amanita phalloides poisoning: reassessment of prognostic factors and indications for emergency liver transplantation. J Hepatol, 46(3): 466–473
CrossRef
Pubmed
Google scholar
|
[37] |
Faulstich H (1980). Mushroom poisoning. Lancet, 2(8198): 794–795
CrossRef
Pubmed
Google scholar
|
[38] |
Faulstich H, Cochet-Meilhac M (1976). Amatoxins in edible mushrooms. FEBS Lett, 64(1): 73–75
CrossRef
Pubmed
Google scholar
|
[39] |
Festucci-Buselli R A, Carvalho-Dias A S, de Oliveira-Andrade M, Caixeta-Nunes C, Li H M, Stuart J J, Muir W, Scharf M E, Pittendrigh B R (2005). Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol Biol, 14(1): 69–77
CrossRef
Pubmed
Google scholar
|
[40] |
Galtier N, Nabholz B, Glémin S, Hurst G D (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol, 18(22): 4541–4550
CrossRef
Pubmed
Google scholar
|
[41] |
Garcia J, Carvalho A T, Dourado D F, Baptista P, de Lourdes Bastos M, Carvalho F (2014). New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes. J Mol Graph Model, 51: 120–127
CrossRef
Pubmed
Google scholar
|
[42] |
Gleixner E M, Canaud G, Hermle T, Guida M C, Kretz O, Helmstädter M, Huber T B, Eimer S, Terzi F, Simons M (2014). V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Reports, 8(1): 10–19
CrossRef
Pubmed
Google scholar
|
[43] |
Greenleaf A L, Borsett L M, Jiamachello P F, Coulter D E (1979). α-amanitin-resistant D. melanogaster with an altered RNA polymerase II. Cell, 18(3): 613–622
CrossRef
Pubmed
Google scholar
|
[44] |
Grimaldi D (1985). Niche separation and competitive coexistence in mycophagous Drosophila (Diptera: Drosophilidae). Proc Entomol Soc Wash, 87: 498–511
|
[45] |
Grimaldi D, Jaenike J (1984). Competition in natural populations of mycophagous Drosophila. Ecology, 65(4): 1113–1120
CrossRef
Google scholar
|
[46] |
Hackman W, Meinander M (1979). Diptera feeding as larvae on macrofungi in Finland. Ann Zool Fenn, 16: 50–83
|
[47] |
Hallen H E, Adams G C, Eicker A, Jäger A K (2002). Amatoxins and phallotoxins in indigenous and introduced South African Amanita species. S Afr J Bot, 68(3): 322–326
CrossRef
Google scholar
|
[48] |
Hallen H E, Luo H, Scott-Craig J S, Walton J D (2007). Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci USA, 104(48): 19097–19101
CrossRef
Pubmed
Google scholar
|
[49] |
Hatadani L M, McInerney J O, de Medeiros H F, Junqueira A C, de Azeredo-Espin A M, Klaczko L B (2009). Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera: Drosophilidae). Mol Phylogenet Evol, 51(3): 595–600
CrossRef
Pubmed
Google scholar
|
[50] |
Heard S B, Hauser D L (1995). Key evolutionary innovations and their ecological mechanisms. Hist Biol, 10(2): 151–173
CrossRef
Google scholar
|
[51] |
Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone A M, Turlapati L, Zichner T, Zhu D, Lyman R F, Magwire M M, Blankenburg K, Carbone M A, Chang K, Ellis L L, Fernandez S, Han Y, Highnam G, Hjelmen C E, Jack J R, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann S M, Ruth R, Saada N, Warner C, Williams A, Wu Y Q, Yamamoto A, Zhang Y, Zhu Y, Anholt R R, Korbel J O, Mittelman D, Muzny D M, Gibbs R A, Barbadilla A, Johnston J S, Stone E A, Richards S, Deplancke B, Mackay T F (2014). Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res, 24(7): 1193–1208
CrossRef
Pubmed
Google scholar
|
[52] |
Humphreys D P, Rundle H D, Dyer K A (2016). Patterns of reproductive isolation in the Drosophila subquinariacomplex: can reinforced premating isolation cascade to other species? Curr Zool, 62(2): 183–191
CrossRef
Pubmed
Google scholar
|
[53] |
Hurst G D D, Jiggins F M (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci, 272(1572): 1525–1534
CrossRef
Pubmed
Google scholar
|
[54] |
Izumitani H F, Kusaka Y, Koshikawa S, Toda M J, Katoh T (2016). Phylogeography of the subgenus Drosophila (Diptera: Drosophilidae): evolutionary history of faunal divergence between the old and the new worlds. PLoS One, 11(7): e0160051
CrossRef
Pubmed
Google scholar
|
[55] |
Jaenike J (1978a). Host selection by mycophagous Drosophila. Ecology, 59(6): 1286–1288
CrossRef
Google scholar
|
[56] |
Jaenike J (1978b). Resource predictability and niche breadth in the Drosophila quinaria species group. Evolution, 32(3): 676–678
CrossRef
Pubmed
Google scholar
|
[57] |
Jaenike J (1985a). Genetic and environmental determinants of food preference in Drosophila tripunctata. Evolution, 39(2): 362–369
CrossRef
Pubmed
Google scholar
|
[58] |
Jaenike J (1985b). Parasite pressure and the evolution of amanitin tolerance in Drosophila. Evolution, 39(6): 1295–1301
CrossRef
Pubmed
Google scholar
|
[59] |
Jaenike J (1986). Genetic complexity of host-selection behavior in Drosophila. Proc Natl Acad Sci USA, 83(7): 2148–2151
CrossRef
Pubmed
Google scholar
|
[60] |
Jaenike J (1987). Genetics of oviposition-site preference in Drosophila tripunctata. Heredity (Edinb), 59(Pt 3): 363–369
CrossRef
Pubmed
Google scholar
|
[61] |
Jaenike J (1989). Genetic population structure of Drosophila tripunctata: Patterns of varitation and covariation of traits affecting resource use. Evolution, 43(7): 1467–1482
Pubmed
|
[62] |
Jaenike J (1992). Mycophagous Drosophila and their nematode parasites. Am Nat, 139(5): 893–906
CrossRef
Google scholar
|
[63] |
Jaenike J, Dyer K A, Cornish C, Minhas M S (2006). Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol, 4(10): e325
CrossRef
Pubmed
Google scholar
|
[64] |
Jaenike J, Grimaldi D (1983). Genetic variation for host preference within and among populations of Drosophila tripunctata. Evolution, 37(5): 1023–1033
CrossRef
Pubmed
Google scholar
|
[65] |
Jaenike J, Grimaldi D A, Sluder A E, Greenleaf A L (1983). a-Amanitin tolerance in mycophagous Drosophila. Science, 221(4606): 165–167
CrossRef
Pubmed
Google scholar
|
[66] |
Jaenike J, James A C (1991). Aggregation and the coexistence of mycophagous Drosophila. J Anim Ecol, 60(3): 913–928
CrossRef
Google scholar
|
[67] |
Jaenike J, Perlman S J (2002). Ecology and evolution of host-parasite associations: mycophagous Drosophila and their parasitic nematodes. Am Nat, 160(Suppl 4): S23–S39
Pubmed
|
[68] |
Jaenike J, Selander R K (1979). Ecological generalism in Drosophila falleni: genetic evidence. Evolution, 33(2): 741–748
CrossRef
Pubmed
Google scholar
|
[69] |
Kalač P (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem, 113(1): 9–16
CrossRef
Google scholar
|
[70] |
Kalač P (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric, 93(2): 209–218
CrossRef
Pubmed
Google scholar
|
[71] |
Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou A G, Savakis C (2012). Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One, 7(6): e40296
CrossRef
Pubmed
Google scholar
|
[72] |
Kaplan C D, Larsson K M, Kornberg R D (2008). The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by α-amanitin. Mol Cell, 30(5): 547–556
CrossRef
Pubmed
Google scholar
|
[73] |
Karlson-Stiber C, Persson H (2003). Cytotoxic fungi--an overview. Toxicon, 42(4): 339–349
CrossRef
Pubmed
Google scholar
|
[74] |
Kaul T N (2002) Biology and conservation of mushrooms. Science Publishers, Inc., Enfield (NH), USA, 255 pp.
|
[75] |
Kaya E, Karahan S, Bayram R, Yaykasli K O, Colakoglu S, Saritas A (2015). Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues. Toxicol Ind Health, 31(12): 1172–1177
CrossRef
Pubmed
Google scholar
|
[76] |
Kaya E, Yilmaz I, Sinirlioglu Z A, Karahan S, Bayram R, Yaykasli K O, Colakoglu S, Saritas A, Severoglu Z (2013). Amanitin and phallotoxin concentration in Amanita phalloides var. alba mushroom. Toxicon, 76: 225–233
CrossRef
Pubmed
Google scholar
|
[77] |
Kijimoto T, Moczek A P, Andrews J (2012). Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc Natl Acad Sci USA, 109(50): 20526–20531
CrossRef
Pubmed
Google scholar
|
[78] |
Kim Y C, Guan K L (2015). mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 125(1): 25–32
CrossRef
Pubmed
Google scholar
|
[79] |
Kimura M T (1980). Evolution of food preferences in fungus-feeding Drosophila: an ecological study. Evolution, 34(5): 1009–1018
Pubmed
|
[80] |
Kimura M T, Toda M J (1989). Food preferences and nematode parasitism in mycophagous Drosophila. Ecol Res, 4(2): 209–218
CrossRef
Google scholar
|
[81] |
Kume K, Ikeda M, Miura S, Ito K, Sato K A, Ohmori Y, Endo F, Katagiri H, Ishida K, Ito C, Iwaya T, Nishizuka S S (2016). α-Amanitin Restrains Cancer Relapse from Drug-Tolerant Cell Subpopulations via TAF15. Sci Rep, 6(1): 25895
CrossRef
Pubmed
Google scholar
|
[82] |
Lacy R C (1984). Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol Entomol, 9(1): 43–54
CrossRef
Google scholar
|
[83] |
Lai M W, Klein-Schwartz W, Rodgers G C Jr, Abrams J Y, Haber D A, Bronstein A C, Wruk K M (2006). 2005 Annual Report of the American Association of Poison Control Centers’ national poisoning and exposure database. Clin Toxicol (Phila), 44(6-7): 803–932
CrossRef
Pubmed
Google scholar
|
[84] |
Le Goff G, Hilliou F, Siegfried B D, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant R H, Feyereisen R (2006). Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol, 36(8): 674–682
CrossRef
Pubmed
Google scholar
|
[85] |
Leathem A M, Purssell R A, Chan V R, Kroeger P D (1997). Renal failure caused by mushroom poisoning. J Toxicol Clin Toxicol, 35(1): 67–75
CrossRef
Pubmed
Google scholar
|
[86] |
Li C, Oberlies N H (2005). The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci, 78(5): 532–538
CrossRef
Pubmed
Google scholar
|
[87] |
Lindell T J, Weinberg F, Morris P W, Roeder R G, Rutter W J (1970). Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science, 170(3956): 447–449
CrossRef
Pubmed
Google scholar
|
[88] |
Litovitz T L, Felberg L, Soloway R A, Ford M, Geller R (1995). 1994 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 13(5): 551–597
CrossRef
Pubmed
Google scholar
|
[89] |
Litovitz T L, Felberg L, White S, Klein-Schwartz W (1996). 1995 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 14(5): 487–537
CrossRef
Pubmed
Google scholar
|
[90] |
Litovitz T L, Klein-Schwartz W, Caravati E M, Youniss J, Crouch B, Lee S (1999). 1998 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 17(5): 435–487
CrossRef
Pubmed
Google scholar
|
[91] |
Litovitz T L, Klein-Schwartz W, Dyer K S, Shannon M, Lee S, Powers M (1998). 1997 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 16(5): 443–497
CrossRef
Pubmed
Google scholar
|
[92] |
Litovitz T L, Klein-Schwartz W, Rodgers G C Jr, Cobaugh D J, Youniss J, Omslaer J C, May M E, Woolf A D, Benson B E (2002). 2001 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 20(5): 391–452
CrossRef
Pubmed
Google scholar
|
[93] |
Litovitz T L, Klein-Schwartz W, White S, Cobaugh D J, Youniss J, Drab A, Benson B E (2000). 1999 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 18(5): 517–574
CrossRef
Pubmed
Google scholar
|
[94] |
Litovitz T L, Klein-Schwartz W, White S, Cobaugh D J, Youniss J, Omslaer J C, Drab A, Benson B E (2001). 2000 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 19(5): 337–395
CrossRef
Pubmed
Google scholar
|
[95] |
Litovitz T L, Smilkstein M, Felberg L, Klein-Schwartz W, Berlin R, Morgan J L (1997). 1996 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 15(5): 447–500
CrossRef
Pubmed
Google scholar
|
[96] |
Liu Y, Zhang X, Han C, Wan G, Huang X, Ivan C, Jiang D, Rodriguez-Aguayo C, Lopez-Berestein G, Rao P H, Maru D M, Pahl A, He X, Sood A K, Ellis L M, Anderl J, Lu X (2015). TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature, 520(7549): 697–701
CrossRef
Pubmed
Google scholar
|
[97] |
Mackay T F, Richards S, Stone E A, Barbadilla A, Ayroles J F, Zhu D, Casillas S, Han Y, Magwire M M, Cridland J M, Richardson M F, Anholt R R, Barrón M, Bess C, Blankenburg K P, Carbone M A, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan J C, Jhangiani S N, Jordan K W, Lara F, Lawrence F, Lee S L, Librado P, Linheiro R S, Lyman R F, Mackey A J, Munidasa M, Muzny D M, Nazareth L, Newsham I, Perales L, Pu L L, Qu C, Ràmia M, Reid J G, Rollmann S M, Rozas J, Saada N, Turlapati L, Worley K C, Wu Y Q, Yamamoto A, Zhu Y, Bergman C M, Thornton K R, Mittelman D, Gibbs R A (2012). The Drosophila melanogaster Genetic Reference Panel. Nature, 482(7384): 173–178
CrossRef
Pubmed
Google scholar
|
[98] |
Marciniak B, Łopaczyńska D, Ferenc T (2017). Evaluation of the genotoxicity of alpha-amanitin in mice bone marrow cells. Toxicon, 137: 1–6
CrossRef
Pubmed
Google scholar
|
[99] |
Mas A (2005). Mushrooms, amatoxins and the liver. J Hepatol, 42(2): 166–169
CrossRef
Pubmed
Google scholar
|
[100] |
Mitchell C L, Latuszek C E, Vogel K R, Greenlund I M, Hobmeier R E, Ingram O K, Dufek S R, Pecore J L, Nip F R, Johnson Z J, Ji X, Wei H, Gailing O, Werner T (2017). a-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One, 12(2): e0173162
CrossRef
Pubmed
Google scholar
|
[101] |
Mitchell C L, Saul M C, Lei L, Wei H, Werner T (2014). The mechanisms underlying α-amanitin resistance in Drosophila melanogaster: a microarray analysis. PLoS One, 9(4): e93489
CrossRef
Pubmed
Google scholar
|
[102] |
Mitchell C L, Yeager R D, Johnson Z J, D’Annunzio S E, Vogel K R, Werner T (2015). Long-term resistance of Drosophila melanogaster to the mushroom toxin α-amanitin. PLoS One, 10(5): e0127569
CrossRef
Pubmed
Google scholar
|
[103] |
Moldenhauer G, Salnikov A V, Lüttgau S, Herr I, Anderl J, Faulstich H (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst, 104(8): 622–634
CrossRef
Pubmed
Google scholar
|
[104] |
Morales-Hojas R, Vieira J (2012). Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila. PLoS One, 7(11): e49552
CrossRef
Pubmed
Google scholar
|
[105] |
Moshnikova A, Moshnikova V, Andreev O A, Reshetnyak Y K (2013). Antiproliferative effect of pHLIP-amanitin. Biochemistry, 52(7): 1171–1178
CrossRef
Pubmed
Google scholar
|
[106] |
Mowry J B, Spyker D A, Cantilena L R Jr, Bailey J E, Ford M (2013). 2012 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 30th Annual Report. Clin Toxicol (Phila), 51(10): 949–1229
CrossRef
Pubmed
Google scholar
|
[107] |
Mowry J B, Spyker D A, Cantilena L R Jr, McMillan N, Ford M (2014). 2013 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st Annual Report. Clin Toxicol (Phila), 52(10): 1032–1283
CrossRef
Pubmed
Google scholar
|
[108] |
Obodai M, Ferreira I C F R, Fernandes A, Barros L, Mensah D L N, Dzomeku M, Urben A F, Prempeh J, Takli R K (2014). Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules, 19(12): 19532–19548
CrossRef
Pubmed
Google scholar
|
[109] |
Perlman S J, Jaenike J (2003). Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution, 57(3): 544–557
CrossRef
Pubmed
Google scholar
|
[110] |
Perlman S J, Spicer G S, Shoemaker D D, Jaenike J (2003). Associations between mycophagous Drosophila and their Howardula nematode parasites: a worldwide phylogenetic shuffle. Mol Ecol, 12(1): 237–249
CrossRef
Pubmed
Google scholar
|
[111] |
Phillips J P, Willms J, Pitt A (1982). α-amanitin resistance in three wild strains of Drosophila melanogaster. Can J Genet Cytol, 24(2): 151–162
CrossRef
Pubmed
Google scholar
|
[112] |
Schluter D (2000) The ecology of adaptive radiation. Oxford University Press Inc., Oxford, New York.
|
[113] |
Shoemaker D D, Katju V, Jaenike J (1999). Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution, 53(4): 1157–1164
CrossRef
Pubmed
Google scholar
|
[114] |
Shorrocks B, Charlesworth P (1980). The distribution and abundance of the British fungal-breeding Drosophila. Ecol Entomol, 5(1): 61–78
CrossRef
Google scholar
|
[115] |
Shorrocks B, Wood A M (1973). A preliminary note on the fungus feeding species of Drosophila. J Nat Hist, 7(5): 551–556
CrossRef
Google scholar
|
[116] |
Simpson G G (1953) The major features of evolution. Columbia University Press, New York, New York.
|
[117] |
Spicer G S, Jaenike J (1996). PHYLOGENETIC ANALYSIS OF BREEDING SITE USE AND α-AMANITIN TOLERANCE WITHIN THE DROSOPHILA QUINARIA SPECIES GROUP. Evolution, 50(6): 2328–2337
Pubmed
|
[118] |
Stansbury M S, Moczek A P (2014). The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc Biol Sci, 281(1782): 20133333
CrossRef
Pubmed
Google scholar
|
[119] |
Stump A D, Jablonski S E, Bouton L, Wilder J A (2011). Distribution and mechanism of α-amanitin tolerance in mycophagous Drosophila (Diptera: Drosophilidae). Environ Entomol, 40(6): 1604–1612
CrossRef
Pubmed
Google scholar
|
[120] |
Toledo C V, Barroetaveña C, Fernandes Â, Barros L, Ferreira I C F R (2016). Chemical and antioxidant properties of wild edible mushrooms from native Nothfagus spp. forest, Argentina. Molecules, 21(9): 1201
CrossRef
Pubmed
Google scholar
|
[121] |
Tuno N, Takahashi K H, Yamashita H, Osawa N, Tanaka C (2007). Tolerance of Drosophila flies to ibotenic acid poisons in mushrooms. J Chem Ecol, 33(2): 311–317
CrossRef
Pubmed
Google scholar
|
[122] |
Tyler V E Jr, Benedict R G, Brady L R, Robbers J E (1966). Occurrence of Amanita toxins in American collections of deadly amanitas. J Pharm Sci, 55(6): 590–593
CrossRef
Pubmed
Google scholar
|
[123] |
Vetter J (1998). Toxins of Amanita phalloides. Toxicon, 36(1): 13–24
CrossRef
Pubmed
Google scholar
|
[124] |
Walton J D, Hallen-Adams H E, Luo H (2010). Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers, 94(5): 659–664
CrossRef
Pubmed
Google scholar
|
[125] |
Watson W A, Litovitz T L, Klein-Schwartz W, Rodgers G C Jr, Youniss J, Reid N, Rouse W G, Rembert R S, Borys D (2004). 2003 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 22(5): 335–404
CrossRef
Pubmed
Google scholar
|
[126] |
Watson W A, Litovitz T L, Rodgers G C Jr, Klein-Schwartz W, Reid N, Youniss J, Flanagan A, Wruk K M (2005). 2004 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 23(5): 589–666
CrossRef
Pubmed
Google scholar
|
[127] |
Watson W A, Litovitz T L, Rodgers G C Jr, Klein-Schwartz W, Youniss J, Rose S R, Borys D, May M E (2003). 2002 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med, 21(5): 353–421
CrossRef
Pubmed
Google scholar
|
[128] |
Werner T (2017). The Drosophilids of a pristine old-growth northern hardwood forest. Great Lakes Entomol, 50: 68–78
|
[129] |
Werner T, Jaenike J (2017) Drosophilids of the Midwest and Northeast. River Campus Libraries, University of Rochester, Rochester, NY, 256 pp.
|
[130] |
Werren J H, Jaenike J (1995). Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity (Edinb), 75(Pt 3): 320–326
CrossRef
Pubmed
Google scholar
|
[131] |
Wieland T (1968). Poisonous principles of mushrooms of the genus Amanita. Four-carbon amines acting on the central nervous system and cell-destroying cyclic peptides are produced. Science, 159(3818): 946–952
CrossRef
Pubmed
Google scholar
|
[132] |
Wieland T (1983). The toxic peptides from Amanita mushrooms. Int J Pept Protein Res, 22(3): 257–276
CrossRef
Pubmed
Google scholar
|
[133] |
Wieland T (1986). Peptides of poisonous Amanita mushrooms. Springer-Verlag, New York, 256 pp.
|
[134] |
Wieland T, Faulstich H, Fiume L (1978). Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem, 5(3): 185–260
CrossRef
Pubmed
Google scholar
|
[135] |
Yocum R R, Simons D M (1977). Amatoxins and phallotoxins in Amanita species of the Northeastern United States. Lloydia, 40: 178–190
|
/
〈 | 〉 |