REVIEW

Molecular mechanisms of transcription and replication of the influenza A virus genome

  • Shijian ZHANG 1 ,
  • Tetsuya TOYODA , 2,3
Expand
  • 1. Shanghai Medical College of Fudan University, Shanghai 200032, China
  • 2. Choju Medical Institute, Fukushimura Hospital, 19-14 Azanakayama, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
  • 3. Infectious Disease Regulation Project, Tokyo Metropolitan Institute of Medical Sciences, 1-6, Kamikitazawa 2-chome, Setagaya-ku, Tokyo156-8506, Japan

Received date: 18 Mar 2011

Accepted date: 06 May 2011

Published date: 01 Dec 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Influenza A virus is one of the major pathogens that pose a large threat to human health worldwide and has caused pandemics. Influenza A virus is the Orthomyxoviridae prototype, and has 8 segmented negative-sense single-stranded RNA (vRNA) as its genome. Influenza virus RNA polymerase (RdRp) consists of three subunits PB2, PB1 and PA, and catalyzes both transcription and replication. Recently, intensive biochemical and structural analysis of its RdRp has been performed. In this paper, we review the details from the biochemical analysis of the purified influenza virus RdRp and the classical ribonucleoprotein complex, as well as piece together their structures to form an overall picture.

Cite this article

Shijian ZHANG , Tetsuya TOYODA . Molecular mechanisms of transcription and replication of the influenza A virus genome[J]. Frontiers in Biology, 2011 , 6(6) : 446 -461 . DOI: 10.1007/s11515-011-1151-5

1
Almond J W (1977). A single gene determines the host range of influenza virus. Nature, 270(5638): 617–618

DOI PMID

2
Area E, Martín-Benito J, Gastaminza P, Torreira E, Valpuesta J M, Carrascosa J L, Ortín J (2004). 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl Acad Sci USA, 101(1): 308–313

DOI PMID

3
Argos P (1988). A sequence motif in many polymerases. Nucleic Acids Res, 16(21): 9909–9916

DOI PMID

4
Ball L A (2007 ). Virus replication strategies, 5th ed. Lippincott Williams & Wilkins

5
Baudin F, Bach C, Cusack S, Ruigrok R W (1994). Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J, 13(13): 3158–3165

PMID

6
Beaton A R, Krug R M (1981). Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res, 9(17): 4423–4436

DOI PMID

7
Beaton A R, Krug R M (1986). Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc Natl Acad Sci USA, 83(17): 6282–6286

DOI PMID

8
Beigel J, Bray M (2008). Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res, 78(1): 91–102

DOI PMID

9
Biswas S K, Nayak D P (1994). Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol, 68(3): 1819–1826

PMID

10
Blaas D, Patzelt E, Kuechler E (1982a). Cap-recognizing protein of influenza virus. Virology, 116(1): 339–348

DOI PMID

11
Blaas D, Patzelt E, Kuechler E (1982b). Identification of the cap binding protein of influenza virus. Nucleic Acids Res, 10(15): 4803–4812

DOI PMID

12
Bouloy M, Plotch S J, Krug R M (1978). Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA, 75(10): 4886–4890

DOI PMID

13
Bouloy M, Plotch S J, Krug R M (1980). Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc Natl Acad Sci USA, 77(7): 3952–3956

DOI PMID

14
Bullido R, Gómez-Puertas P, Albo C, Portela A (2000). Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J Gen Virol, 81(Pt 1): 135–142

PMID

15
Chan A Y, Vreede F T, Smith M, Engelhardt O G, Fodor E (2006). Influenza virus inhibits RNA polymerase II elongation. Virology, 351(1): 210–217

DOI PMID

16
Chen G W, Chang S C, Mok C K, Lo Y L, Kung Y N, Huang J H, Shih Y H, Wang J Y, Chiang C, Chen C J, Shih S R (2006). Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis, 12(9): 1353–1360

PMID

17
Chung T D, Cianci C, Hagen M, Terry B, Matthews J T, Krystal M, Colonno R J (1994). Biochemical studies on capped RNA primers identify a class of oligonucleotide inhibitors of the influenza virus RNA polymerase. Proc Natl Acad Sci USA, 91(6): 2372–2376

DOI PMID

18
Coloma R, Valpuesta J M, Arranz R, Carrascosa J L, Ortín J, Martín-Benito J (2009). The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog, 5(6): e1000491

DOI PMID

19
Crépin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok R W (2010). Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol, 84(18): 9096–9104

DOI PMID

20
Cros J F, García-Sastre A, Palese P (2005). An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic, 6(3): 205–213

DOI PMID

22
Deng T, Sharps J, Fodor E, Brownlee G G (2005). In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol, 79(13): 8669–8674

DOI PMID

21
Deng T, Engelhardt O G, Thomas B, Akoulitchev A V, Brownlee G G, Fodor E (2006a). Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol, 80(24): 11911–11919

DOI PMID

23
Deng T, Sharps J L, Brownlee G G (2006b). Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J Gen Virol, 87(Pt 11): 3373–3377

DOI PMID

24
Deng T, Vreede F T, Brownlee G G (2006c). Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol, 80(5): 2337–2348

DOI PMID

25
Deyde V M, Xu X, Bright R A, Shaw M, Smith C B, Zhang Y, Shu Y, Gubareva L V, Cox N J, Klimov A I (2007). Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis, 196(2): 249–257

DOI PMID

26
Dias A, Bouvier D, Crépin T, McCarthy A A, Hart D J, Baudin F, Cusack S, Ruigrok R W (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458(7240): 914–918

DOI PMID

27
Duan S, Boltz D A, Seiler P, Li J, Bragstad K, Nielsen L P, Webby R J, Webster R G, Govorkova E A (2010). Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog, 6(7): e1001022

DOI PMID

28
Duijsings D, Kormelink R, Goldbach R (2001). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J, 20(10): 2545–2552

DOI PMID

29
Engelhardt O G, Smith M, Fodor E (2005). Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol, 79(9): 5812–5818

DOI PMID

30
Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee G G (2003). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J Biol Chem, 278(22): 20381–20388

DOI PMID

31
Flick R, Hobom G (1999). Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. J Gen Virol, 80(Pt 10): 2565–2572

PMID

32
Fodor E, Brownlee G (2002). Influenza virus replication. In: Potter C, ed. Influenza. Elsevier, Amsterdom, pp. 1–29

33
Fodor E, Mikulasova A, Mingay L J, Poon L L, Brownlee G G (2000). Messenger RNAs that are not synthesized by RNA polymerase II can be 3′ end cleaved and polyadenylated. EMBO Rep, 1(6): 513–518

PMID

34
Fodor E, Palese P, Brownlee G G, García-Sastre A (1998). Attenuation of influenza A virus mRNA levels by promoter mutations. J Virol, 72(8): 6283–6290

PMID

35
Fodor E, Pritlove D C, Brownlee G G (1994). The influenza virus panhandle is involved in the initiation of transcription. J Virol, 68(6): 4092–4096

PMID

36
Fodor E, Smith M (2004). The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol, 78(17): 9144–9153

DOI PMID

37
Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Narita H, Shiraki K (2002). In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother, 46(4): 977–981

DOI PMID

38
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K (2005). Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother, 49(3): 981–986

DOI PMID

39
Gabriel G, Dauber B, Wolff T, Planz O, Klenk H D, Stech J (2005). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA, 102(51): 18590–18595

DOI PMID

40
Gabriel G, Herwig A, Klenk H D (2008). Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog, 4(2): e11

DOI PMID

41
Garcin D, Kolakofsky D (1992). Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol, 66(3): 1370–1376

PMID

42
Garcin D, Lezzi M, Dobbs M, Elliott R M, Schmaljohn C, Kang C Y, Kolakofsky D (1995). The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol, 69(9): 5754–5762

PMID

43
González S, Zürcher T, Ortín J (1996). Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res, 24(22): 4456–4463

DOI PMID

44
Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok R W, Ortin J, Hart D J, Cusack S (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol, 15(5): 500–506

DOI PMID

45
Gutiérrez R A, Naughtin M J, Horm S V, San S, Buchy P (2009). A(H5N1) virus evolution in South East Asia. Viruses, 1(3): 335–361

DOI

46
Hagen M, Chung T D, Butcher J A, Krystal M (1994). Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. J Virol, 68(3): 1509–1515

PMID

47
Hankins R W, Nagata K, Bucher D J, Popple S, Ishihama A (1989). Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition. Virus Genes, 3(2): 111–126

DOI PMID

48
Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom C A, Newton M A, Ahlquist P, Kawaoka Y (2008). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature, 454(7206): 890–893

DOI PMID

49
Hatta M, Gao P, Halfmann P, Kawaoka Y (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293(5536): 1840–1842

50
Hauge S H, Dudman S, Borgen K, Lackenby A, Hungnes O (2009). Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007-08. Emerg Infect Dis, 15: 155–162

51
Hayden F (2009). Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis, 48(Suppl 1): S3–S13

DOI PMID

52
He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y (2008). Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature, 454(7208): 1123–1126

DOI PMID

53
Herfst S, Chutinimitkul S, Ye J, de Wit E, Munster V J, Schrauwen E J, Bestebroer T M, Jonges M, Meijer A, Koopmans M, Rimmelzwaan G F, Osterhaus A D, Perez D R, Fouchier R A (2010). Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol, 84(8): 3752–3758

DOI PMID

54
Honda A, Endo A, Mizumoto K, Ishihama A (2001). Differential roles of viral RNA and cRNA in functional modulation of the influenza virus RNA polymerase. J Biol Chem, 276(33): 31179–31185

DOI PMID

55
Honda A, Mizumoto K, Ishihama A (1999). Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells, 4(8): 475–485

DOI PMID

56
Honda A, Mizumoto K, Ishihama A (2002). Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci USA, 99(20): 13166–13171

DOI PMID

57
Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak D P, Ishihama A (1990). Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem, 107(4): 624–628

PMID

58
Honda A, Okamoto T, Ishihama A (2007). Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells, 12(2): 133–142

DOI PMID

59
Honda A, Uéda K, Nagata K, Ishihama A (1988). RNA polymerase of influenza virus: role of NP in RNA chain elongation. J Biochem, 104(6): 1021–1026

PMID

60
Huarte M, Sanz-Ezquerro J J, Roncal F, Ortín J, Nieto A (2001). PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol, 75(18): 8597–8604

DOI PMID

61
Huiet L, Feldstein P A, Tsai J H, Falk B W (1993). The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5′ termini. Virology, 197(2): 808–812

DOI PMID

62
Hurt A C, Ho H T, Barr I (2006). Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors. Expert Rev Anti Infect Ther, 4(5): 795–805

DOI PMID

63
Ishihama A, Nagata K (1988). Viral RNA polymerases. CRC Crit Rev Biochem, 23(1): 27–76

DOI PMID

64
Jiang H, Zhang S, Wang Q, Wang J, Geng L, Toyoda T (2010). Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology, 408(2): 190–196

DOI PMID

65
Jin H, Elliott R M (1993a). Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol, 67(3): 1396–1404

PMID

66
Jin H, Elliott R M (1993b). Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J Gen Virol, 74(Pt 10): 2293–2297

DOI PMID

67
Kao C C, Singh P, Ecker D J (2001). De novo initiation of viral RNA-dependent RNA synthesis. Virology, 287(2): 251–260

DOI PMID

68
Kao C C, Sun J H (1996). Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol, 70(10): 6826–6830

PMID

69
Kao R Y, Yang D, Lau L S, Tsui W H, Hu L, Dai J, Chan M P, Chan C M, Wang P, Zheng B J, Sun J, Huang J D, Madar J, Chen G, Chen H, Guan Y, Yuen K Y (2010). Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol, 28(6): 600–605

DOI PMID

70
Karlas A, Machuy N, Shin Y, Pleissner K P, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie L A, Hess S, Mäurer A P, Müller E, Wolff T, Rudel T, Meyer T F (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 463(7282): 818–822

DOI PMID

71
Kashiwagi T, Leung B W, Deng T, Chen H, Brownlee G G (2009). The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. PLoS One, 4(5): e5473

DOI PMID

72
Kawaguchi A, Nagata K (2007). De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J, 26(21): 4566–4575

DOI PMID

73
Kawakami K, Mizumoto K, Ishihama A (1983). RNA polymerase of influenza virus. IV. Catalytic properties of the capped RNA endonuclease associated with the RNA polymerase. Nucleic Acids Res, 11(11): 3637–3649

DOI PMID

74
Kiso M, Shinya K, Shimojima M, Takano R, Takahashi K, Katsura H, Kakugawa S, Le M T, Yamashita M, Furuta Y, Ozawa M, Kawaoka Y (2010). Characterization of oseltamivir-resistant 2009 H1N1 pandemic influenza A viruses. PLoS Pathog, 6(8): e1001079

DOI PMID

75
Kobayashi M, Toyoda T, Ishihama A (1996). Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase. Arch Virol, 141(3-4): 525–539

DOI PMID

76
König R, Stertz S, Zhou Y, Inoue A, Hoffmann H H, Bhattacharyya S, Alamares J G, Tscherne D M, Ortigoza M B, Liang Y, Gao Q, Andrews S E, Bandyopadhyay S, De Jesus P, Tu B P, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, García-Sastre A, Young J A, Palese P, Shaw M L, Chanda S K (2010). Human host factors required for influenza virus replication. Nature, 463(7282): 813–817

DOI PMID

77
Kormelink R, van Poelwijk F, Peters D, Goldbach R (1992). Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. J Gen Virol, 73(8): 2125–2128

DOI PMID

78
Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H(2009a). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem, 284(22): 6855–6860

79
Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H (2009b). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem, 284(11): 6855–6860

DOI PMID

80
Lackenby A, Thompson C I, Democratis J (2008). The potential impact of neuraminidase inhibitor resistant influenza. Curr Opin Infect Dis, 21(6): 626–638

DOI PMID

81
Leahy M B, Dobbyn H C, Brownlee G G (2001a). Hairpin loop structure in the 3′ arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol, 75(15): 7042–7049

DOI PMID

82
Leahy M B, Pritlove D C, Poon L L, Brownlee G G (2001b). Mutagenic analysis of the 5′ arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity. J Virol, 75(1): 134–142

DOI PMID

83
Li M L, Rao P, Krug R M (2001). The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J, 20(8): 2078–2086

DOI PMID

84
Li X, Palese P (1994). Characterization of the polyadenylation signal of influenza virus RNA. J Virol, 68(2): 1245–1249

PMID

85
Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K (2005). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 79(18): 12058–12064

DOI PMID

86
Luo G, Hamatake R K, Mathis D M, Racela J, Rigat K L, Lemm J, Colonno R J (2000). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol, 74(2): 851–863

DOI PMID

87
Luo G X, Luytjes W, Enami M, Palese P (1991). The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol, 65(6): 2861–2867

PMID

88
Mark G E, Taylor J M, Broni B, Krug R M (1979). Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and alpha-amanitin. J Virol, 29(2): 744–752

PMID

89
Martin K, Helenius A (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 67(1): 117–130

DOI PMID

90
Massin P, van der Werf S, Naffakh N (2001). Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol, 75(11): 5398–5404

DOI PMID

91
Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, García-Sastre A, Schwemmle M (2007). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res, 6(2): 672–682

DOI PMID

92
Mehle A, Doudna J A (2008). An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe, 4(2): 111–122

DOI PMID

93
Momose F, Basler C F, O’Neill R E, Iwamatsu A, Palese P, Nagata K (2001). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol, 75(4): 1899–1908

DOI PMID

94
Momose F, Handa H, Nagata K (1996). Identification of host factors that regulate the influenza virus RNA polymerase activity. Biochimie, 78(11-12): 1103–1108

DOI PMID

95
Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002). Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem, 277(47): 45306–45314

DOI PMID

96
Monsalvo A C, Batalle J P, Lopez M F, Krause J C, Klemenc J, Hernandez J Z, Maskin B, Bugna J, Rubinstein C, Aguilar L, Dalurzo L, Libster R, Savy V, Baumeister E, Aguilar L, Cabral G, Font J, Solari L, Weller K P, Johnson J, Echavarria M, Edwards K M, Chappell J D, Crowe J E Jr, Williams J V, Melendi G A, Polack F P (2011). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med, 17(2): 195–199

DOI PMID

97
Moscona A (2009). Global transmission of oseltamivir-resistant influenza. N Engl J Med, 360(10): 953–956

DOI PMID

98
Moss R B, Davey R T, Steigbigel R T, Fang F (2010). Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemother, 65(6): 1086–1093

DOI PMID

99
Nagata K, Kawaguchi A, Naito T (2008). Host factors for replication and transcription of the influenza virus genome. Rev Med Virol, 18(4): 247–260

DOI PMID

100
Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R, Matsukage A, Nagata K (2007a). An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. Proc Natl Acad Sci USA, 104(46): 18235–18240

DOI PMID

101
Naito T, Momose F, Kawaguchi A, Nagata K (2007b). Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol, 81(3): 1339–1349

DOI PMID

102
Nakagawa Y, Oda K, Nakada S (1996). The PB1 subunit alone can catalyze cRNA synthesis, and the PA subunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome. J Virol, 70(9): 6390–6394

PMID

103
Neumann G, Castrucci M R, Kawaoka Y (1997). Nuclear import and export of influenza virus nucleoprotein. J Virol, 71(12): 9690–9700

PMID

104
Neumann G, Hobom G (1995). Mutational analysis of influenza virus promoter elements in vivo. J Gen Virol, 76(7): 1709–1717

DOI PMID

105
Newcomb L L, Kuo R L, Ye Q, Jiang Y, Tao Y J, Krug R M (2009). Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication. J Virol, 83(1): 29–36

DOI PMID

106
O’Neill R E, Jaskunas R, Blobel G, Palese P, Moroianu J (1995). Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem, 270(39): 22701–22704

DOI PMID

107
O’Neill R E, Palese P (1995). NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology, 206(1): 116–125

DOI PMID

108
Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, Nagata K, Tame J R, Park S Y (2008). The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature, 454(7208): 1127–1131

DOI PMID

109
Oberg B (2006). Rational design of polymerase inhibitors as antiviral drugs. Antiviral Res, 71(2-3): 90–95

DOI PMID

110
Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T (2002). Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol, 46(3): 167–175

PMID

111
Ortega J, Martín-Benito J, Zürcher T, Valpuesta J M, Carrascosa J L, Ortín J (2000). Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol, 74(1): 156–163

DOI PMID

112
Palese P, Shaw M L (2007). Orthomyxoviridae: the Viruses and Their Replication, 5th ed. Lippincott Williams & Wilkins

113
Paul A V, Rieder E, Kim D W, van Boom J H, Wimmer E (2000). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol, 74(22): 10359–10370

DOI PMID

114
Pérez D R, Donis R O (1995). A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA. J Virol, 69(11): 6932–6939

PMID

115
Pérez-González A, Rodriguez A, Huarte M, Salanueva I J, Nieto A (2006). hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol, 362(5): 887–900

DOI PMID

116
Plotch S J, Bouloy M, Ulmanen I, Krug R M (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3): 847–858

DOI PMID

117
Plotch S J, Krug R M (1977). Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol, 21(1): 24–34

PMID

118
Plotch S J, Krug R M (1978). Segments of influenza virus complementary RNA synthesized in vitro. J Virol, 25(2): 579–586

PMID

119
Plotkin J B, Dushoff J, Levin S A (2002). Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA, 99(9): 6263–6268

DOI PMID

120
Poole E L, Medcalf L, Elton D, Digard P (2007). Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete α-helical domain. FEBS Lett, 581(27): 5300–5306

DOI PMID

121
Poon L L, Fodor E, Brownlee G G (2000). Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export. J Virol, 74(1): 418–427

DOI PMID

122
Poon L L, Pritlove D C, Fodor E, Brownlee G G (1999). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol, 73(4): 3473–3476

PMID

123
Poon L L, Pritlove D C, Sharps J, Brownlee G G (1998). The RNA polymerase of influenza virus, bound to the 5′ end of virion RNA, acts in cis to polyadenylate mRNA. J Virol, 72(10): 8214–8219

PMID

124
Pritlove D C, Poon L L, Devenish L J, Leahy M B, Brownlee G G (1999). A hairpin loop at the 5′ end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro. J Virol, 73(3): 2109–2114

PMID

125
Pritlove D C, Poon L L, Fodor E, Sharps J, Brownlee G G (1998). Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5′ conserved sequences. J Virol, 72(2): 1280–1286

PMID

126
Rao P, Yuan W, Krug R M (2003). Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J, 22(5): 1188–1198

DOI PMID

127
Resa-Infante P, Jorba N, Zamarreño N, Fernández Y, Juárez S, Ortín J (2008). The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS ONE, 3(12): e3904

DOI PMID

128
Robertson J S, Schubert M, Lazzarini R A (1981). Polyadenylation sites for influenza virus mRNA. J Virol, 38(1): 157–163

PMID

129
Seong B L, Kobayashi M, Nagata K, Brownlee G G, Ishihama A (1992). Comparison of two reconstituted systems for in vitro transcription and replication of influenza virus. J Biochem, 111(4): 496–499

PMID

130
Shapiro G I, Krug R M (1988). Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol, 62(7): 2285–2290

PMID

131
Shaw M W, Lamb R A (1984). A specific sub-set of host-cell mRNAs prime influenza virus mRNA synthesis. Virus Res, 1(6): 455–467

DOI PMID

132
Su C Y, Cheng T J, Lin M I, Wang S Y, Huang W I, Lin-Chu S Y, Chen Y H, Wu C Y, Lai M M, Cheng W C, Wu Y T, Tsai M D, Cheng Y S, Wong C H (2010). High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. Proc Natl Acad Sci USA, 107(45): 19151–19156

DOI PMID

133
Subbarao E K, London W, Murphy B R (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 67(4): 1761–1764

PMID

134
Sugiyama K, Obayashi E, Kawaguchi A, Suzuki Y, Tame J R, Nagata K, Park S Y (2009). Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J, 28(12): 1803–1811

DOI PMID

135
Tarendeau F, Boudet J, Guilligay D, Mas P J, Bougault C M, Boulo S, Baudin F, Ruigrok R W, Daigle N, Ellenberg J, Cusack S, Simorre J P, Hart D J (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol, 14(3): 229–233

DOI PMID

136
Testa D, Banerjee A K (1979). Initiation of RNA synthesis in vitro by vesicular stomatitis virus. Role of ATP. J Biol Chem, 254(6): 2053–2058

PMID

137
Torreira E, Schoehn G, Fernández Y, Jorba N, Ruigrok R W, Cusack S, Ortín J, Llorca O (2007). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res, 35(11): 3774–3783

DOI PMID

138
Toyoda T, Adyshev D M, Kobayashi M, Iwata A, Ishihama A (1996a). Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J Gen Virol, 77(9): 2149–2157

DOI PMID

139
Toyoda T, Kobayashi M, Nakada S, Ishihama A (1996b). Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis. Virus Genes, 12(2): 155–163

DOI PMID

140
Tsai C H, Lee P Y, Stollar V, Li M L (2006). Antiviral therapy targeting viral polymerase. Curr Pharm Des, 12(11): 1339–1355

DOI PMID

141
Ulmanen I, Broni B, Krug R M (1983). Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J Virol, 45(1): 27–35

PMID

142
Ulmanen I, Broni B A, Krug R M (1981). Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci USA, 78(12): 7355–7359

DOI PMID

143
van Dijk A A, Makeyev E V, Bamford D H (2004). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol, 85(5): 1077–1093

DOI PMID

144
Vreede F T, Brownlee G G (2007). Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol, 81(5): 2196–2204

DOI PMID

145
Vreede F T, Gifford H, Brownlee G G (2008). Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol, 82(14): 6902–6910

DOI PMID

146
Vreede F T, Jung T E, Brownlee G G (2004). Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol, 78(17): 9568–9572

DOI PMID

147
Wang P, Palese P, O’Neill R E (1997). The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol, 71(3): 1850–1856

PMID

148
Watanabe K, Handa H, Mizumoto K, Nagata K (1996). Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol, 70(1): 241–247

PMID

149
Weber F, Kochs G, Gruber S, Haller O (1998). A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology, 250(1): 9–18

DOI PMID

150
Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25–S30

PMID

151
Wright P F, Neumann G, Kawaoka Y (2007). Orthomyxoviruses, 5th ed. Lippincott Williams & Wilkins.

152
Yang Y, Rijnbrand R, Watowich S, Lemon S M (2004). Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein. J Biol Chem, 279(13): 12659–12667

DOI PMID

153
Ye Q, Krug R M, Tao Y J (2006). The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature, 444(7122): 1078–1082

DOI PMID

154
Ye Z P, Pal R, Fox J W, Wagner R R (1987). Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol, 61(2): 239–246

PMID

155
Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature, 458(7240): 909–913

DOI PMID

156
Zhang S, Wang J, Wang Q, Toyoda T (2010a). Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro. J Biol Chem, 285: 41194–41201

DOI PMID

157
Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T (2010b). Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun, 391(1): 570–574

DOI PMID

158
Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009). Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol, 83(18): 9024–9030

DOI PMID

159
Zheng H, Lee H A, Palese P, García-Sastre A (1999). Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. J Virol, 73(6): 5240–5243

PMID

160
Zvonarjev A Y, Ghendon Y Z (1980). Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine. J Virol, 33(2): 583–586

PMID

Outlines

/