REVIEW

New glimpses of caveolin-1 functions in embryonic development and human diseases

  • Saijun MO 1 ,
  • Shengli YANG 1 ,
  • Zongbin CUI , 2
Expand
  • 1. Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
  • 2. Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Received date: 14 Dec 2010

Accepted date: 30 Dec 2010

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from Caenorhabditis elegans to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.

Cite this article

Saijun MO , Shengli YANG , Zongbin CUI . New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Frontiers in Biology, 2011 , 6(5) : 367 -376 . DOI: 10.1007/s11515-011-1132-8

1
Abulrob A, Giuseppin S, Andrade M F, McDermid A, Moreno M, Stanimirovic D (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene, 23(41): 6967–6979

DOI PMID

2
Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8(15): 1470–1477

DOI PMID

3
Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto L G, Béliveau R (2007). Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem, 101(1): 1–8

DOI PMID

4
Bartholomew J N, Volonte D, Galbiati F (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res, 69(7): 2878–2886

DOI PMID

5
Bélanger M M, Gaudreau M, Roussel E, Couet J (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther, 3(10): 954–959

DOI PMID

5
Bullejos M, Bowles J, Koopmanl P (2002). Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn, 225: 95–99

DOI PMID

6
Cabrita M A, Jäggi F, Widjaja S P, Christofori G (2006). A functional interaction between sprouty proteins and caveolin-1. J Biol Chem, 281(39): 29201–29212

DOI PMID

7
Cai Q C, Jiang Q W, Zhao G M, Guo Q, Cao G W, Chen T (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin, 24(10): 1051–1059

PMID

8
Chen J, Capozza F, Wu A, Deangelis T, Sun H, Lisanti M, Baserga R (2008). Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol, 217(1): 281–289

DOI PMID

9
Cohen A W, Park D S, Woodman S E, Williams T M, Chandra M, Shirani J, Pereira de Souza A, Kitsis R N, Russell R G, Weiss L M, Tang B, Jelicks L A, Factor S M, Shtutin V, Tanowitz H B, Lisanti M P (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol, 284(2): C457–C474

PMID

10
Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes, 53(5): 1261–1270

DOI

10
Couet J, Li S, Okamoto T, Scherer P S, Lisanti M P (1997). Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med, 7(4): 103–110

DOI

11
Davidson B, Goldberg I, Givant-Horwitz V, Nesland J M, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen G B, Tropé C G, van de Putte G, Reich R (2002). Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol, 117(2): 225–234

DOI PMID

12
Del Galdo F, Sotgia F, de Almeida C J, Jasmin J F, Musick M, Lisanti M P, Jiménez S A (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum, 58(9): 2854–2865

DOI PMID

13
Dietzen D J, Hastings W R, Lublin D M (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem, 270(12): 6838–6842

PMID

14
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539): 2449–2452

DOI PMID

15
Engelman J A, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz D S, Lisanti M P (1998a). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett, 428(3): 205–211

DOI PMID

16
Engelman J A, Zhang X L, Galbiati F, Lisanti M P (1998b). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett, 429(3): 330–336

DOI PMID

17
Engelman J A, Zhang X L, Lisanti M P (1999). Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett, 448(2–3): 221–230

DOI PMID

18
Fakhrzadeh L, Laskin J D, Laskin D L (2008). Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation. Toxicol Appl Pharmacol, 227(3): 380–389

DOI PMID

19
Fang K, Fu W, Beardsley A R, Sun X, Lisanti M P, Liu J (2007). Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle, 6(2): 199–204

PMID

20
Fang P K, Solomon K R, Zhuang L, Qi M, McKee M, Freeman M R, Yelick P C (2006). Caveolin-1α and -1β perform nonredundant roles in early vertebrate development. Am J Pathol, 169(6): 2209–2222

DOI PMID

21
Feng X, Gaeta M L, Madge L A, Yang J H, Bradley J R, Pober J S (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem, 276(11): 8341–8349

DOI PMID

22
Fernández M A, Albor C, Ingelmo-Torres M, Nixon S J, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton R G, Pol A (2006). Caveolin-1 is essential for liver regeneration. Science, 313(5793): 1628–1632

DOI PMID

23
Frank P G, Lisanti M P (2006). Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol, 169(6): 1910–1912

DOI PMID

24
Frank P G, Lisanti M P (2007). Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle, 6(2): 115–116

PMID

25
Fujimoto T, Kogo H, Nomura R, Une T (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci, 113(Pt 19): 3509–3517

PMID

26
Galbiati F, Volonte D, Brown A M, Weinstein D E, Ben-Ze’ev A, Pestell R G, Lisanti M P (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem, 275(30): 23368–23377

DOI PMID

27
Galbiati F, Volonté D, Liu J, Capozza F, Frank P G, Zhu L, Pestell R G, Lisanti M P (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell, 12(8): 2229–2244

PMID

28
Garrean S, Gao X P, Brovkovych V, Shimizu J, Zhao Y Y, Vogel S M, Malik A B (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol, 177(7): 4853–4860

PMID

29
Glenney J R Jr, Soppet D (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A, 89(21): 10517–10521

DOI PMID

30
Han F, Gu D, Chen Q, Zhu H (2009). Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas, 38(7): 766–774

DOI PMID

30
Hashimoto M, Takenouchi T, Rockenstein E, Maslia E (2003). Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J Neurochem, 85(6): 1468–1479

DOI PMID

31
Head B P, Insel P A (2007). Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol, 17(2): 51–57

DOI PMID

32
Hernández-Bello R, Bermúdez-Cruz R M, Fonseca-Liñán R, García-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G (2008). Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol, 38(2): 191–202

DOI PMID

33
Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33(7): 486–490

PMID

34
Huang J H, Lu L, Lu H, Chen X, Jiang S, Chen Y H (2007). Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem, 282(9): 6143–6152

DOI PMID

35
Joshi B, Strugnell S S, Goetz J G, Kojic L D, Cox M E, Griffith O L, Chan S K, Jones S J, Leung S P, Masoudi H, Leung S, Wiseman S M, Nabi I R (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res, 68(20): 8210–8220

DOI PMID

36
Juhász M, Chen J, Tulassay Z, Malfertheiner P, Ebert M P (2003). Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol, 129(9): 493–497

DOI PMID

37
Kasper M, Reimann T, Hempel U, Wenzel K W, Bierhaus A, Schuh D, Dimmer V, Haroske G, Müller M (1998). Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol, 109(1): 41–48

DOI PMID

38
Kim H A, Kim K H, Lee R A (2006). Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol, 80(2): 165–170

DOI PMID

38
Kim Y N, Bertics P J (2002). The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology, 143(5): 1726–1731

DOI PMID

39
Kogo H, Aiba T, Fujimoto T (2004). Cell type-specific occurrence of caveolin-1alpha and -1beta in the lung caused by expression of distinct mRNAs. J Biol Chem, 279(24): 25574–25581

DOI PMID

40
Kogo H, Fujimoto T (2000). Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett, 465(2–3): 119–123

DOI PMID

41
Labrecque L, Royal I, Surprenant D S, Patterson C, Gingras D, Béliveau R (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell, 14(1): 334–347

DOI PMID

42
Lavie Y, Fiucci G, Liscovitch M (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem, 273(49): 32380–32383

DOI PMID

43
Le Lan C, Neumann J M, Jamin N (2006). Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. FEBS Lett, 580(22): 5301–5305

DOI PMID

44
Lee E K, Lee Y S, Han I O, Park S H (2007). Expression of Caveolin-1 reduces cellular responses to TGF-beta1 through down-regulating the expression of TGF-beta type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun, 359(2): 385–390

DOI PMID

45
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin D M, Bregman D B, Wilson M T, Campos-Gonzalez R, Bouzahzah B, Pestell R G, Scherer P E, Lisanti M P (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol, 14(11): 1750–1775

DOI PMID

46
Lee H, Woodman S E, Engelman J A, Volonté D, Galbiati F, Kaufman H L, Lublin D M, Lisanti M P (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem, 276(37): 35150–35158

DOI PMID

47
Li L, Ren C, Yang G, Goltsov A A, Tabata K, Thompson T C (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res, 7(11): 1781–1791

DOI PMID

48
Li S, Seitz R, Lisanti M P (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 271(7): 3863–3868

PMID

49
Lin S, Wang X M, Nadeau P E, Mergia A (2010). HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol, 84(18): 9487–9496

DOI PMID

50
Linge A, Weinhold K, Bläsche R, Kasper M, Barth K (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol, 39(10): 1964–1974

DOI PMID

51
Lisanti M P, Scherer P E, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu Y H, Cook R F, Sargiacomo M (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol, 126(1): 111–126

DOI PMID

52
Liu J, Razani B, Tang S, Terman B I, Ware J A, Lisanti M P (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem, 274(22): 15781–15785

DOI PMID

53
Liu P, Rudick M, Anderson R G (2002). Multiple functions of caveolin-1. J Biol Chem, 277(44): 41295–41298

DOI PMID

54
Llano M, Kelly T, Vanegas M, Peretz M, Peterson T E, Simari R D, Poeschla E M (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol, 76(18): 9152–9164

DOI PMID

55
Machleidt T, Li W P, Liu P, Anderson R G (2000). Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol, 148(1): 17–28

DOI PMID

56
Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek R A, Zitzmann N, Nichita N B (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol, 84(1): 243–253

DOI PMID

57
Matthews L C, Taggart M J, Westwood M (2008). Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology, 149(10): 5199–5208

DOI PMID

58
Mayoral R, Fernández-Martínez A, Roy R, Boscá L, Martín-Sanz P (2007). Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology, 46(3): 813–822

DOI PMID

59
Mir K D, Parr R D, Schroeder F, Ball J M (2007). Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res, 126(1–2): 106–115

DOI PMID

60
Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V J, Cui Z (2010). Caveolin-1 regulates dorsoventral patterning through direct interaction with beta-catenin in zebrafish. Dev Biol, 344(1): 210–223

DOI PMID

61
Nixon S J, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton R G (2007). Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci, 120(Pt 13): 2151–2161

DOI PMID

62
Nohe A, Keating E, Underhill T M, Knaus P, Petersen N O (2005). Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci, 118(Pt 3): 643–650

DOI PMID

63
Nystrom F H, Chen H, Cong L N, Li Y, Quon M J (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol, 13(12): 2013–2024

DOI PMID

64
Ono K, Iwanaga Y, Hirayama M, Kawamura T, Sowa N, Hasegawa K (2004). Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol, 287(1): L201–L209

DOI PMID

65
Padhan K, Tanwar C, Hussain A, Hui P Y, Lee M Y, Cheung C Y, Peiris J S, Jameel S (2007). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol, 88(Pt 11): 3067–3077

DOI PMID

66
Park J H, Han H J (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297(4): C935–C944

DOI PMID

67
Peng F, Zhang B, Wu D, Ingram A J, Gao B, Krepinsky J C (2008). TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol, 295(1): F153–F164

DOI PMID

68
Peterson T E, Guicciardi M E, Gulati R, Kleppe L S, Mueske C S, Mookadam M, Sowa G, Gores G J, Sessa W C, Simari R D (2003). Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol, 23(9): 1521–1527

DOI PMID

69
Ravid D, Leser G P, Lamb R A (2010). A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol, 84(19): 9749–9759

DOI PMID

70
Ravid D, Maor S, Werner H, Liscovitch M (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 24(8): 1338–1347

DOI PMID

71
Razani B, Altschuler Y, Zhu L, Pestell R G, Mostov K E, Lisanti M P (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39(45): 13916–13924

DOI PMID

72
Razani B, Engelman J A, Wang X B, Schubert W, Zhang X L, Marks C B, Macaluso F, Russell R G, Li M, Pestell R G, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ G J, Edelmann W, Lisanti M P (2001b). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276(41): 38121–38138

PMID

73
Razani B, Park D S, Miyanaga Y, Ghatpande A, Cohen J, Wang X B, Scherer P E, Evans T, Lisanti M P (2002). Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry, 41(25): 7914–7924

DOI PMID

74
Razani B, Zhang X L, Bitzer M, von Gersdorff G, Böttinger E P, Lisanti M P (2001a). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem, 276(9): 6727–6738

DOI PMID

75
Rodriguez D A, Tapia J C, Fernandez J G, Torres V A, Muñoz N, Galleguillos D, Leyton L, Quest A F (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell, 20(8): 2297–2310

DOI PMID

76
Rothberg K G, Heuser J E, Donzell W C, Ying Y S, Glenney J R, Anderson R G (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4): 673–682

DOI PMID

77
Santibanez J F, Blanco F J, Garrido-Martin E M, Sanz-Rodriguez F, del Pozo M A, Bernabeu C (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res, 77(4): 791–799

DOI PMID

78
Sargiacomo M, Scherer P E, Tang Z, Kübler E, Song K S, Sanders M C, Lisanti M P (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA, 92(20): 9407–9411

DOI PMID

79
Sawada S, Ishikawa C, Tanji H, Nakachi S, Senba M, Okudaira T, Uchihara J N, Taira N, Ohshiro K, Yamada Y, Tanaka Y, Uezato H, Ohshima K, Sasai K, Burgering B M, Duc Dodon M, Fujii M, Sunakawa H, Mori N (2010). Overexpression of caveolin-1 in adult T-cell leukemia. Blood, 115(11): 2220–2230

DOI PMID

80
Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia T V (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol, 1(2): 127–129

DOI PMID

81
Scherer P E, Lewis R Y, Volonte D, Engelman J A, Galbiati F, Couet J, Kohtz D S, van Donselaar E, Peters P, Lisanti M P (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 272(46): 29337–29346

DOI PMID

82
Scherer P E, Tang Z, Chun M, Sargiacomo M, Lodish H F, Lisanti M P (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 270(27): 16395–16401

PMID

82
Schwencke C, Braun-Dullaeus R C, Wunderlich C, Strasser R H (2006). Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res, 70(1): 42–49

PMID

83
Schlegel A, Lisanti M P (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem, 275(28): 21605–21617

DOI PMID

84
Schubert W, Sotgia F, Cohen A W, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti M P (2007). Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol, 170(1): 316–333

DOI PMID

85
Sedding D G, Braun-Dullaeus R C (2006). Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med, 16(2): 50–55

DOI PMID

86
Smith J L, Campos S K, Ozbun M A (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 81(18): 9922–9931

DOI PMID

87
Sun L, Hemgård G V, Susanto S A, Wirth M (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J, 7(1): 108

DOI PMID

88
Sun X H, Flynn D C, Castranova V, Millecchia L L, Beardsley A R, Liu J (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem, 282(10): 7232–7241

DOI PMID

89
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S (2001). Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int, 59(2): 471–480

DOI PMID

90
Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka A J, Lisanti M P (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem, 272(4): 2437–2445

DOI PMID

91
Torres V A, Tapia J C, Rodríguez D A, Párraga M, Lisboa P, Montoya M, Leyton L, Quest A F (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci, 119(Pt 9): 1812–1823

DOI PMID

92
Tourkina E, Richard M, Gööz P, Bonner M, Pannu J, Harley R, Bernatchez P N, Sessa W C, Silver R M, Hoffman S (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol, 294(5): L843–L861

DOI PMID

93
Uittenbogaard A, Smart E J (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem, 275(33): 25595–25599

DOI PMID

94
Wang C, Mei Y, Li L, Mo D, Li J, Zhang H, Tian X, Chen Y (2008). Molecular characterization and expression analysis of caveolin-1 in pig tissues. Sci China C Life Sci, 51(7): 655–661

DOI PMID

95
Wang L, Mo S, Li J, Li Q, Cui Z (2010a). Preliminary study on functions of zebrafish Caveolin-1. Acta Hydrobiologica Sinica, 34(4): 1083–1090

96
Wang X M, Kim H P, Song R, Choi A M (2006). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol, 34(4): 434–442

DOI PMID

97
Wang X M, Nadeau P E, Lo Y T, Mergia A (2010b). Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol, 84(13): 6515–6526

DOI PMID

98
Williams T M, Lisanti M P (2004). The Caveolin genes: from cell biology to medicine. Ann Med, 36(8): 584–595

DOI PMID

99
Williams T M, Lisanti M P (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288(3): C494–C506

DOI PMID

100
Yamada E (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol, 1(5): 445–458

DOI PMID

101
Yamaguchi Y, Yasuoka H, Stolz D B, Feghali-Bostwick C A (2010). Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med,

DOI PMID

102
Yamamoto H, Komekado H, Kikuchi A (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell, 11(2): 213–223

DOI PMID

103
Zaas D W, Swan Z, Brown B J, Wright J R, Abraham S N (2009). The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol, 2(6): 535–537

DOI PMID

104
Zhang B, Peng F, Wu D, Ingram A J, Gao B, Krepinsky J C (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 19(8): 1690–1700

DOI PMID

105
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov K E, Pestell R G, Lisanti M P (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem, 275(27): 20717–20725

DOI PMID

106
Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q (2009). Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun, 378(1): 21–26

PMID

107
Zhu H, Cai C, Chen J (2004). Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett, 576(3): 369–374

DOI PMID

Outlines

/