New glimpses of caveolin-1 functions in embryonic development and human diseases
Received date: 14 Dec 2010
Accepted date: 30 Dec 2010
Published date: 01 Oct 2011
Copyright
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from Caenorhabditis elegans to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Key words: Caveolin-1; signal transduction; embryonic development; human diseases
Saijun MO , Shengli YANG , Zongbin CUI . New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Frontiers in Biology, 2011 , 6(5) : 367 -376 . DOI: 10.1007/s11515-011-1132-8
1 |
Abulrob A, Giuseppin S, Andrade M F, McDermid A, Moreno M, Stanimirovic D (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene, 23(41): 6967–6979
|
2 |
Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8(15): 1470–1477
|
3 |
Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto L G, Béliveau R (2007). Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem, 101(1): 1–8
|
4 |
Bartholomew J N, Volonte D, Galbiati F (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res, 69(7): 2878–2886
|
5 |
Bélanger M M, Gaudreau M, Roussel E, Couet J (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther, 3(10): 954–959
|
5 |
Bullejos M, Bowles J, Koopmanl P (2002). Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn, 225: 95–99
|
6 |
Cabrita M A, Jäggi F, Widjaja S P, Christofori G (2006). A functional interaction between sprouty proteins and caveolin-1. J Biol Chem, 281(39): 29201–29212
|
7 |
Cai Q C, Jiang Q W, Zhao G M, Guo Q, Cao G W, Chen T (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin, 24(10): 1051–1059
|
8 |
Chen J, Capozza F, Wu A, Deangelis T, Sun H, Lisanti M, Baserga R (2008). Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol, 217(1): 281–289
|
9 |
Cohen A W, Park D S, Woodman S E, Williams T M, Chandra M, Shirani J, Pereira de Souza A, Kitsis R N, Russell R G, Weiss L M, Tang B, Jelicks L A, Factor S M, Shtutin V, Tanowitz H B, Lisanti M P (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol, 284(2): C457–C474
|
10 |
Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes, 53(5): 1261–1270
|
10 |
Couet J, Li S, Okamoto T, Scherer P S, Lisanti M P (1997). Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med, 7(4): 103–110
|
11 |
Davidson B, Goldberg I, Givant-Horwitz V, Nesland J M, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen G B, Tropé C G, van de Putte G, Reich R (2002). Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol, 117(2): 225–234
|
12 |
Del Galdo F, Sotgia F, de Almeida C J, Jasmin J F, Musick M, Lisanti M P, Jiménez S A (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum, 58(9): 2854–2865
|
13 |
Dietzen D J, Hastings W R, Lublin D M (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem, 270(12): 6838–6842
|
14 |
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539): 2449–2452
|
15 |
Engelman J A, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz D S, Lisanti M P (1998a). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett, 428(3): 205–211
|
16 |
Engelman J A, Zhang X L, Galbiati F, Lisanti M P (1998b). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett, 429(3): 330–336
|
17 |
Engelman J A, Zhang X L, Lisanti M P (1999). Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett, 448(2–3): 221–230
|
18 |
Fakhrzadeh L, Laskin J D, Laskin D L (2008). Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation. Toxicol Appl Pharmacol, 227(3): 380–389
|
19 |
Fang K, Fu W, Beardsley A R, Sun X, Lisanti M P, Liu J (2007). Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle, 6(2): 199–204
|
20 |
Fang P K, Solomon K R, Zhuang L, Qi M, McKee M, Freeman M R, Yelick P C (2006). Caveolin-1α and -1β perform nonredundant roles in early vertebrate development. Am J Pathol, 169(6): 2209–2222
|
21 |
Feng X, Gaeta M L, Madge L A, Yang J H, Bradley J R, Pober J S (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem, 276(11): 8341–8349
|
22 |
Fernández M A, Albor C, Ingelmo-Torres M, Nixon S J, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton R G, Pol A (2006). Caveolin-1 is essential for liver regeneration. Science, 313(5793): 1628–1632
|
23 |
Frank P G, Lisanti M P (2006). Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol, 169(6): 1910–1912
|
24 |
Frank P G, Lisanti M P (2007). Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle, 6(2): 115–116
|
25 |
Fujimoto T, Kogo H, Nomura R, Une T (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci, 113(Pt 19): 3509–3517
|
26 |
Galbiati F, Volonte D, Brown A M, Weinstein D E, Ben-Ze’ev A, Pestell R G, Lisanti M P (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem, 275(30): 23368–23377
|
27 |
Galbiati F, Volonté D, Liu J, Capozza F, Frank P G, Zhu L, Pestell R G, Lisanti M P (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell, 12(8): 2229–2244
|
28 |
Garrean S, Gao X P, Brovkovych V, Shimizu J, Zhao Y Y, Vogel S M, Malik A B (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol, 177(7): 4853–4860
|
29 |
Glenney J R Jr, Soppet D (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A, 89(21): 10517–10521
|
30 |
Han F, Gu D, Chen Q, Zhu H (2009). Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas, 38(7): 766–774
|
30 |
Hashimoto M, Takenouchi T, Rockenstein E, Maslia E (2003). Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J Neurochem, 85(6): 1468–1479
|
31 |
Head B P, Insel P A (2007). Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol, 17(2): 51–57
|
32 |
Hernández-Bello R, Bermúdez-Cruz R M, Fonseca-Liñán R, García-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G (2008). Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol, 38(2): 191–202
|
33 |
Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33(7): 486–490
|
34 |
Huang J H, Lu L, Lu H, Chen X, Jiang S, Chen Y H (2007). Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem, 282(9): 6143–6152
|
35 |
Joshi B, Strugnell S S, Goetz J G, Kojic L D, Cox M E, Griffith O L, Chan S K, Jones S J, Leung S P, Masoudi H, Leung S, Wiseman S M, Nabi I R (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res, 68(20): 8210–8220
|
36 |
Juhász M, Chen J, Tulassay Z, Malfertheiner P, Ebert M P (2003). Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol, 129(9): 493–497
|
37 |
Kasper M, Reimann T, Hempel U, Wenzel K W, Bierhaus A, Schuh D, Dimmer V, Haroske G, Müller M (1998). Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol, 109(1): 41–48
|
38 |
Kim H A, Kim K H, Lee R A (2006). Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol, 80(2): 165–170
|
38 |
Kim Y N, Bertics P J (2002). The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology, 143(5): 1726–1731
|
39 |
Kogo H, Aiba T, Fujimoto T (2004). Cell type-specific occurrence of caveolin-1alpha and -1beta in the lung caused by expression of distinct mRNAs. J Biol Chem, 279(24): 25574–25581
|
40 |
Kogo H, Fujimoto T (2000). Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett, 465(2–3): 119–123
|
41 |
Labrecque L, Royal I, Surprenant D S, Patterson C, Gingras D, Béliveau R (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell, 14(1): 334–347
|
42 |
Lavie Y, Fiucci G, Liscovitch M (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem, 273(49): 32380–32383
|
43 |
Le Lan C, Neumann J M, Jamin N (2006). Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. FEBS Lett, 580(22): 5301–5305
|
44 |
Lee E K, Lee Y S, Han I O, Park S H (2007). Expression of Caveolin-1 reduces cellular responses to TGF-beta1 through down-regulating the expression of TGF-beta type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun, 359(2): 385–390
|
45 |
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin D M, Bregman D B, Wilson M T, Campos-Gonzalez R, Bouzahzah B, Pestell R G, Scherer P E, Lisanti M P (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol, 14(11): 1750–1775
|
46 |
Lee H, Woodman S E, Engelman J A, Volonté D, Galbiati F, Kaufman H L, Lublin D M, Lisanti M P (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem, 276(37): 35150–35158
|
47 |
Li L, Ren C, Yang G, Goltsov A A, Tabata K, Thompson T C (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res, 7(11): 1781–1791
|
48 |
Li S, Seitz R, Lisanti M P (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 271(7): 3863–3868
|
49 |
Lin S, Wang X M, Nadeau P E, Mergia A (2010). HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol, 84(18): 9487–9496
|
50 |
Linge A, Weinhold K, Bläsche R, Kasper M, Barth K (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol, 39(10): 1964–1974
|
51 |
Lisanti M P, Scherer P E, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu Y H, Cook R F, Sargiacomo M (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol, 126(1): 111–126
|
52 |
Liu J, Razani B, Tang S, Terman B I, Ware J A, Lisanti M P (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem, 274(22): 15781–15785
|
53 |
Liu P, Rudick M, Anderson R G (2002). Multiple functions of caveolin-1. J Biol Chem, 277(44): 41295–41298
|
54 |
Llano M, Kelly T, Vanegas M, Peretz M, Peterson T E, Simari R D, Poeschla E M (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol, 76(18): 9152–9164
|
55 |
Machleidt T, Li W P, Liu P, Anderson R G (2000). Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol, 148(1): 17–28
|
56 |
Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek R A, Zitzmann N, Nichita N B (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol, 84(1): 243–253
|
57 |
Matthews L C, Taggart M J, Westwood M (2008). Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology, 149(10): 5199–5208
|
58 |
Mayoral R, Fernández-Martínez A, Roy R, Boscá L, Martín-Sanz P (2007). Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology, 46(3): 813–822
|
59 |
Mir K D, Parr R D, Schroeder F, Ball J M (2007). Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res, 126(1–2): 106–115
|
60 |
Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V J, Cui Z (2010). Caveolin-1 regulates dorsoventral patterning through direct interaction with beta-catenin in zebrafish. Dev Biol, 344(1): 210–223
|
61 |
Nixon S J, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton R G (2007). Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci, 120(Pt 13): 2151–2161
|
62 |
Nohe A, Keating E, Underhill T M, Knaus P, Petersen N O (2005). Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci, 118(Pt 3): 643–650
|
63 |
Nystrom F H, Chen H, Cong L N, Li Y, Quon M J (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol, 13(12): 2013–2024
|
64 |
Ono K, Iwanaga Y, Hirayama M, Kawamura T, Sowa N, Hasegawa K (2004). Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol, 287(1): L201–L209
|
65 |
Padhan K, Tanwar C, Hussain A, Hui P Y, Lee M Y, Cheung C Y, Peiris J S, Jameel S (2007). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol, 88(Pt 11): 3067–3077
|
66 |
Park J H, Han H J (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297(4): C935–C944
|
67 |
Peng F, Zhang B, Wu D, Ingram A J, Gao B, Krepinsky J C (2008). TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol, 295(1): F153–F164
|
68 |
Peterson T E, Guicciardi M E, Gulati R, Kleppe L S, Mueske C S, Mookadam M, Sowa G, Gores G J, Sessa W C, Simari R D (2003). Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol, 23(9): 1521–1527
|
69 |
Ravid D, Leser G P, Lamb R A (2010). A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol, 84(19): 9749–9759
|
70 |
Ravid D, Maor S, Werner H, Liscovitch M (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 24(8): 1338–1347
|
71 |
Razani B, Altschuler Y, Zhu L, Pestell R G, Mostov K E, Lisanti M P (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39(45): 13916–13924
|
72 |
Razani B, Engelman J A, Wang X B, Schubert W, Zhang X L, Marks C B, Macaluso F, Russell R G, Li M, Pestell R G, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ G J, Edelmann W, Lisanti M P (2001b). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276(41): 38121–38138
|
73 |
Razani B, Park D S, Miyanaga Y, Ghatpande A, Cohen J, Wang X B, Scherer P E, Evans T, Lisanti M P (2002). Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry, 41(25): 7914–7924
|
74 |
Razani B, Zhang X L, Bitzer M, von Gersdorff G, Böttinger E P, Lisanti M P (2001a). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem, 276(9): 6727–6738
|
75 |
Rodriguez D A, Tapia J C, Fernandez J G, Torres V A, Muñoz N, Galleguillos D, Leyton L, Quest A F (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell, 20(8): 2297–2310
|
76 |
Rothberg K G, Heuser J E, Donzell W C, Ying Y S, Glenney J R, Anderson R G (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4): 673–682
|
77 |
Santibanez J F, Blanco F J, Garrido-Martin E M, Sanz-Rodriguez F, del Pozo M A, Bernabeu C (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res, 77(4): 791–799
|
78 |
Sargiacomo M, Scherer P E, Tang Z, Kübler E, Song K S, Sanders M C, Lisanti M P (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA, 92(20): 9407–9411
|
79 |
Sawada S, Ishikawa C, Tanji H, Nakachi S, Senba M, Okudaira T, Uchihara J N, Taira N, Ohshiro K, Yamada Y, Tanaka Y, Uezato H, Ohshima K, Sasai K, Burgering B M, Duc Dodon M, Fujii M, Sunakawa H, Mori N (2010). Overexpression of caveolin-1 in adult T-cell leukemia. Blood, 115(11): 2220–2230
|
80 |
Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia T V (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol, 1(2): 127–129
|
81 |
Scherer P E, Lewis R Y, Volonte D, Engelman J A, Galbiati F, Couet J, Kohtz D S, van Donselaar E, Peters P, Lisanti M P (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 272(46): 29337–29346
|
82 |
Scherer P E, Tang Z, Chun M, Sargiacomo M, Lodish H F, Lisanti M P (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 270(27): 16395–16401
|
82 |
Schwencke C, Braun-Dullaeus R C, Wunderlich C, Strasser R H (2006). Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res, 70(1): 42–49
|
83 |
Schlegel A, Lisanti M P (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem, 275(28): 21605–21617
|
84 |
Schubert W, Sotgia F, Cohen A W, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti M P (2007). Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol, 170(1): 316–333
|
85 |
Sedding D G, Braun-Dullaeus R C (2006). Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med, 16(2): 50–55
|
86 |
Smith J L, Campos S K, Ozbun M A (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 81(18): 9922–9931
|
87 |
Sun L, Hemgård G V, Susanto S A, Wirth M (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J, 7(1): 108
|
88 |
Sun X H, Flynn D C, Castranova V, Millecchia L L, Beardsley A R, Liu J (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem, 282(10): 7232–7241
|
89 |
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S (2001). Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int, 59(2): 471–480
|
90 |
Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka A J, Lisanti M P (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem, 272(4): 2437–2445
|
91 |
Torres V A, Tapia J C, Rodríguez D A, Párraga M, Lisboa P, Montoya M, Leyton L, Quest A F (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci, 119(Pt 9): 1812–1823
|
92 |
Tourkina E, Richard M, Gööz P, Bonner M, Pannu J, Harley R, Bernatchez P N, Sessa W C, Silver R M, Hoffman S (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol, 294(5): L843–L861
|
93 |
Uittenbogaard A, Smart E J (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem, 275(33): 25595–25599
|
94 |
Wang C, Mei Y, Li L, Mo D, Li J, Zhang H, Tian X, Chen Y (2008). Molecular characterization and expression analysis of caveolin-1 in pig tissues. Sci China C Life Sci, 51(7): 655–661
|
95 |
Wang L, Mo S, Li J, Li Q, Cui Z (2010a). Preliminary study on functions of zebrafish Caveolin-1. Acta Hydrobiologica Sinica, 34(4): 1083–1090
|
96 |
Wang X M, Kim H P, Song R, Choi A M (2006). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol, 34(4): 434–442
|
97 |
Wang X M, Nadeau P E, Lo Y T, Mergia A (2010b). Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol, 84(13): 6515–6526
|
98 |
Williams T M, Lisanti M P (2004). The Caveolin genes: from cell biology to medicine. Ann Med, 36(8): 584–595
|
99 |
Williams T M, Lisanti M P (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288(3): C494–C506
|
100 |
Yamada E (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol, 1(5): 445–458
|
101 |
Yamaguchi Y, Yasuoka H, Stolz D B, Feghali-Bostwick C A (2010). Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med,
|
102 |
Yamamoto H, Komekado H, Kikuchi A (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell, 11(2): 213–223
|
103 |
Zaas D W, Swan Z, Brown B J, Wright J R, Abraham S N (2009). The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol, 2(6): 535–537
|
104 |
Zhang B, Peng F, Wu D, Ingram A J, Gao B, Krepinsky J C (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 19(8): 1690–1700
|
105 |
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov K E, Pestell R G, Lisanti M P (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem, 275(27): 20717–20725
|
106 |
Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q (2009). Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun, 378(1): 21–26
|
107 |
Zhu H, Cai C, Chen J (2004). Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett, 576(3): 369–374
|
/
〈 | 〉 |