New glimpses of caveolin-1 functions in embryonic development and human diseases

Saijun MO, Shengli YANG, Zongbin CUI

PDF(209 KB)
PDF(209 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (5) : 367-376. DOI: 10.1007/s11515-011-1132-8
REVIEW
REVIEW

New glimpses of caveolin-1 functions in embryonic development and human diseases

Author information +
History +

Abstract

Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from Caenorhabditis elegans to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.

Keywords

Caveolin-1 / signal transduction / embryonic development / human diseases

Cite this article

Download citation ▾
Saijun MO, Shengli YANG, Zongbin CUI. New glimpses of caveolin-1 functions in embryonic development and human diseases. Front Biol, 2011, 6(5): 367‒376 https://doi.org/10.1007/s11515-011-1132-8

References

[1]
Abulrob A, Giuseppin S, Andrade M F, McDermid A, Moreno M, Stanimirovic D (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene, 23(41): 6967–6979
CrossRef Pubmed Google scholar
[2]
Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8(15): 1470–1477
CrossRef Pubmed Google scholar
[3]
Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto L G, Béliveau R (2007). Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem, 101(1): 1–8
CrossRef Pubmed Google scholar
[4]
Bartholomew J N, Volonte D, Galbiati F (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res, 69(7): 2878–2886
CrossRef Pubmed Google scholar
[5]
Bélanger M M, Gaudreau M, Roussel E, Couet J (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther, 3(10): 954–959
CrossRef Pubmed Google scholar
[5]
Bullejos M, Bowles J, Koopmanl P (2002). Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn, 225: 95–99
CrossRef Pubmed Google scholar
[6]
Cabrita M A, Jäggi F, Widjaja S P, Christofori G (2006). A functional interaction between sprouty proteins and caveolin-1. J Biol Chem, 281(39): 29201–29212
CrossRef Pubmed Google scholar
[7]
Cai Q C, Jiang Q W, Zhao G M, Guo Q, Cao G W, Chen T (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin, 24(10): 1051–1059
Pubmed
[8]
Chen J, Capozza F, Wu A, Deangelis T, Sun H, Lisanti M, Baserga R (2008). Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol, 217(1): 281–289
CrossRef Pubmed Google scholar
[9]
Cohen A W, Park D S, Woodman S E, Williams T M, Chandra M, Shirani J, Pereira de Souza A, Kitsis R N, Russell R G, Weiss L M, Tang B, Jelicks L A, Factor S M, Shtutin V, Tanowitz H B, Lisanti M P (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol, 284(2): C457–C474
Pubmed
[10]
Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes, 53(5): 1261–1270
CrossRef Google scholar
[10]
Couet J, Li S, Okamoto T, Scherer P S, Lisanti M P (1997). Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med, 7(4): 103–110
CrossRef Google scholar
[11]
Davidson B, Goldberg I, Givant-Horwitz V, Nesland J M, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen G B, Tropé C G, van de Putte G, Reich R (2002). Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol, 117(2): 225–234
CrossRef Pubmed Google scholar
[12]
Del Galdo F, Sotgia F, de Almeida C J, Jasmin J F, Musick M, Lisanti M P, Jiménez S A (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum, 58(9): 2854–2865
CrossRef Pubmed Google scholar
[13]
Dietzen D J, Hastings W R, Lublin D M (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem, 270(12): 6838–6842
Pubmed
[14]
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539): 2449–2452
CrossRef Pubmed Google scholar
[15]
Engelman J A, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz D S, Lisanti M P (1998a). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett, 428(3): 205–211
CrossRef Pubmed Google scholar
[16]
Engelman J A, Zhang X L, Galbiati F, Lisanti M P (1998b). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett, 429(3): 330–336
CrossRef Pubmed Google scholar
[17]
Engelman J A, Zhang X L, Lisanti M P (1999). Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett, 448(2–3): 221–230
CrossRef Pubmed Google scholar
[18]
Fakhrzadeh L, Laskin J D, Laskin D L (2008). Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation. Toxicol Appl Pharmacol, 227(3): 380–389
CrossRef Pubmed Google scholar
[19]
Fang K, Fu W, Beardsley A R, Sun X, Lisanti M P, Liu J (2007). Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle, 6(2): 199–204
Pubmed
[20]
Fang P K, Solomon K R, Zhuang L, Qi M, McKee M, Freeman M R, Yelick P C (2006). Caveolin-1α and -1β perform nonredundant roles in early vertebrate development. Am J Pathol, 169(6): 2209–2222
CrossRef Pubmed Google scholar
[21]
Feng X, Gaeta M L, Madge L A, Yang J H, Bradley J R, Pober J S (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem, 276(11): 8341–8349
CrossRef Pubmed Google scholar
[22]
Fernández M A, Albor C, Ingelmo-Torres M, Nixon S J, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton R G, Pol A (2006). Caveolin-1 is essential for liver regeneration. Science, 313(5793): 1628–1632
CrossRef Pubmed Google scholar
[23]
Frank P G, Lisanti M P (2006). Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol, 169(6): 1910–1912
CrossRef Pubmed Google scholar
[24]
Frank P G, Lisanti M P (2007). Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle, 6(2): 115–116
Pubmed
[25]
Fujimoto T, Kogo H, Nomura R, Une T (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci, 113(Pt 19): 3509–3517
Pubmed
[26]
Galbiati F, Volonte D, Brown A M, Weinstein D E, Ben-Ze’ev A, Pestell R G, Lisanti M P (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem, 275(30): 23368–23377
CrossRef Pubmed Google scholar
[27]
Galbiati F, Volonté D, Liu J, Capozza F, Frank P G, Zhu L, Pestell R G, Lisanti M P (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell, 12(8): 2229–2244
Pubmed
[28]
Garrean S, Gao X P, Brovkovych V, Shimizu J, Zhao Y Y, Vogel S M, Malik A B (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol, 177(7): 4853–4860
Pubmed
[29]
Glenney J R Jr, Soppet D (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A, 89(21): 10517–10521
CrossRef Pubmed Google scholar
[30]
Han F, Gu D, Chen Q, Zhu H (2009). Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas, 38(7): 766–774
CrossRef Pubmed Google scholar
[30]
Hashimoto M, Takenouchi T, Rockenstein E, Maslia E (2003). Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J Neurochem, 85(6): 1468–1479
CrossRef Pubmed Google scholar
[31]
Head B P, Insel P A (2007). Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol, 17(2): 51–57
CrossRef Pubmed Google scholar
[32]
Hernández-Bello R, Bermúdez-Cruz R M, Fonseca-Liñán R, García-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G (2008). Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol, 38(2): 191–202
CrossRef Pubmed Google scholar
[33]
Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33(7): 486–490
Pubmed
[34]
Huang J H, Lu L, Lu H, Chen X, Jiang S, Chen Y H (2007). Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem, 282(9): 6143–6152
CrossRef Pubmed Google scholar
[35]
Joshi B, Strugnell S S, Goetz J G, Kojic L D, Cox M E, Griffith O L, Chan S K, Jones S J, Leung S P, Masoudi H, Leung S, Wiseman S M, Nabi I R (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res, 68(20): 8210–8220
CrossRef Pubmed Google scholar
[36]
Juhász M, Chen J, Tulassay Z, Malfertheiner P, Ebert M P (2003). Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol, 129(9): 493–497
CrossRef Pubmed Google scholar
[37]
Kasper M, Reimann T, Hempel U, Wenzel K W, Bierhaus A, Schuh D, Dimmer V, Haroske G, Müller M (1998). Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol, 109(1): 41–48
CrossRef Pubmed Google scholar
[38]
Kim H A, Kim K H, Lee R A (2006). Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol, 80(2): 165–170
CrossRef Pubmed Google scholar
[38]
Kim Y N, Bertics P J (2002). The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology, 143(5): 1726–1731
CrossRef Pubmed Google scholar
[39]
Kogo H, Aiba T, Fujimoto T (2004). Cell type-specific occurrence of caveolin-1alpha and -1beta in the lung caused by expression of distinct mRNAs. J Biol Chem, 279(24): 25574–25581
CrossRef Pubmed Google scholar
[40]
Kogo H, Fujimoto T (2000). Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett, 465(2–3): 119–123
CrossRef Pubmed Google scholar
[41]
Labrecque L, Royal I, Surprenant D S, Patterson C, Gingras D, Béliveau R (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell, 14(1): 334–347
CrossRef Pubmed Google scholar
[42]
Lavie Y, Fiucci G, Liscovitch M (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem, 273(49): 32380–32383
CrossRef Pubmed Google scholar
[43]
Le Lan C, Neumann J M, Jamin N (2006). Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. FEBS Lett, 580(22): 5301–5305
CrossRef Pubmed Google scholar
[44]
Lee E K, Lee Y S, Han I O, Park S H (2007). Expression of Caveolin-1 reduces cellular responses to TGF-beta1 through down-regulating the expression of TGF-beta type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun, 359(2): 385–390
CrossRef Pubmed Google scholar
[45]
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin D M, Bregman D B, Wilson M T, Campos-Gonzalez R, Bouzahzah B, Pestell R G, Scherer P E, Lisanti M P (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol, 14(11): 1750–1775
CrossRef Pubmed Google scholar
[46]
Lee H, Woodman S E, Engelman J A, Volonté D, Galbiati F, Kaufman H L, Lublin D M, Lisanti M P (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem, 276(37): 35150–35158
CrossRef Pubmed Google scholar
[47]
Li L, Ren C, Yang G, Goltsov A A, Tabata K, Thompson T C (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res, 7(11): 1781–1791
CrossRef Pubmed Google scholar
[48]
Li S, Seitz R, Lisanti M P (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 271(7): 3863–3868
Pubmed
[49]
Lin S, Wang X M, Nadeau P E, Mergia A (2010). HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol, 84(18): 9487–9496
CrossRef Pubmed Google scholar
[50]
Linge A, Weinhold K, Bläsche R, Kasper M, Barth K (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol, 39(10): 1964–1974
CrossRef Pubmed Google scholar
[51]
Lisanti M P, Scherer P E, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu Y H, Cook R F, Sargiacomo M (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol, 126(1): 111–126
CrossRef Pubmed Google scholar
[52]
Liu J, Razani B, Tang S, Terman B I, Ware J A, Lisanti M P (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem, 274(22): 15781–15785
CrossRef Pubmed Google scholar
[53]
Liu P, Rudick M, Anderson R G (2002). Multiple functions of caveolin-1. J Biol Chem, 277(44): 41295–41298
CrossRef Pubmed Google scholar
[54]
Llano M, Kelly T, Vanegas M, Peretz M, Peterson T E, Simari R D, Poeschla E M (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol, 76(18): 9152–9164
CrossRef Pubmed Google scholar
[55]
Machleidt T, Li W P, Liu P, Anderson R G (2000). Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol, 148(1): 17–28
CrossRef Pubmed Google scholar
[56]
Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek R A, Zitzmann N, Nichita N B (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol, 84(1): 243–253
CrossRef Pubmed Google scholar
[57]
Matthews L C, Taggart M J, Westwood M (2008). Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology, 149(10): 5199–5208
CrossRef Pubmed Google scholar
[58]
Mayoral R, Fernández-Martínez A, Roy R, Boscá L, Martín-Sanz P (2007). Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology, 46(3): 813–822
CrossRef Pubmed Google scholar
[59]
Mir K D, Parr R D, Schroeder F, Ball J M (2007). Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res, 126(1–2): 106–115
CrossRef Pubmed Google scholar
[60]
Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V J, Cui Z (2010). Caveolin-1 regulates dorsoventral patterning through direct interaction with beta-catenin in zebrafish. Dev Biol, 344(1): 210–223
CrossRef Pubmed Google scholar
[61]
Nixon S J, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton R G (2007). Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci, 120(Pt 13): 2151–2161
CrossRef Pubmed Google scholar
[62]
Nohe A, Keating E, Underhill T M, Knaus P, Petersen N O (2005). Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci, 118(Pt 3): 643–650
CrossRef Pubmed Google scholar
[63]
Nystrom F H, Chen H, Cong L N, Li Y, Quon M J (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol, 13(12): 2013–2024
CrossRef Pubmed Google scholar
[64]
Ono K, Iwanaga Y, Hirayama M, Kawamura T, Sowa N, Hasegawa K (2004). Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol, 287(1): L201–L209
CrossRef Pubmed Google scholar
[65]
Padhan K, Tanwar C, Hussain A, Hui P Y, Lee M Y, Cheung C Y, Peiris J S, Jameel S (2007). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol, 88(Pt 11): 3067–3077
CrossRef Pubmed Google scholar
[66]
Park J H, Han H J (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297(4): C935–C944
CrossRef Pubmed Google scholar
[67]
Peng F, Zhang B, Wu D, Ingram A J, Gao B, Krepinsky J C (2008). TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol, 295(1): F153–F164
CrossRef Pubmed Google scholar
[68]
Peterson T E, Guicciardi M E, Gulati R, Kleppe L S, Mueske C S, Mookadam M, Sowa G, Gores G J, Sessa W C, Simari R D (2003). Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol, 23(9): 1521–1527
CrossRef Pubmed Google scholar
[69]
Ravid D, Leser G P, Lamb R A (2010). A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol, 84(19): 9749–9759
CrossRef Pubmed Google scholar
[70]
Ravid D, Maor S, Werner H, Liscovitch M (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 24(8): 1338–1347
CrossRef Pubmed Google scholar
[71]
Razani B, Altschuler Y, Zhu L, Pestell R G, Mostov K E, Lisanti M P (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry, 39(45): 13916–13924
CrossRef Pubmed Google scholar
[72]
Razani B, Engelman J A, Wang X B, Schubert W, Zhang X L, Marks C B, Macaluso F, Russell R G, Li M, Pestell R G, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ G J, Edelmann W, Lisanti M P (2001b). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276(41): 38121–38138
Pubmed
[73]
Razani B, Park D S, Miyanaga Y, Ghatpande A, Cohen J, Wang X B, Scherer P E, Evans T, Lisanti M P (2002). Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry, 41(25): 7914–7924
CrossRef Pubmed Google scholar
[74]
Razani B, Zhang X L, Bitzer M, von Gersdorff G, Böttinger E P, Lisanti M P (2001a). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem, 276(9): 6727–6738
CrossRef Pubmed Google scholar
[75]
Rodriguez D A, Tapia J C, Fernandez J G, Torres V A, Muñoz N, Galleguillos D, Leyton L, Quest A F (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell, 20(8): 2297–2310
CrossRef Pubmed Google scholar
[76]
Rothberg K G, Heuser J E, Donzell W C, Ying Y S, Glenney J R, Anderson R G (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4): 673–682
CrossRef Pubmed Google scholar
[77]
Santibanez J F, Blanco F J, Garrido-Martin E M, Sanz-Rodriguez F, del Pozo M A, Bernabeu C (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res, 77(4): 791–799
CrossRef Pubmed Google scholar
[78]
Sargiacomo M, Scherer P E, Tang Z, Kübler E, Song K S, Sanders M C, Lisanti M P (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA, 92(20): 9407–9411
CrossRef Pubmed Google scholar
[79]
Sawada S, Ishikawa C, Tanji H, Nakachi S, Senba M, Okudaira T, Uchihara J N, Taira N, Ohshiro K, Yamada Y, Tanaka Y, Uezato H, Ohshima K, Sasai K, Burgering B M, Duc Dodon M, Fujii M, Sunakawa H, Mori N (2010). Overexpression of caveolin-1 in adult T-cell leukemia. Blood, 115(11): 2220–2230
CrossRef Pubmed Google scholar
[80]
Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia T V (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol, 1(2): 127–129
CrossRef Pubmed Google scholar
[81]
Scherer P E, Lewis R Y, Volonte D, Engelman J A, Galbiati F, Couet J, Kohtz D S, van Donselaar E, Peters P, Lisanti M P (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 272(46): 29337–29346
CrossRef Pubmed Google scholar
[82]
Scherer P E, Tang Z, Chun M, Sargiacomo M, Lodish H F, Lisanti M P (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 270(27): 16395–16401
Pubmed
[82]
Schwencke C, Braun-Dullaeus R C, Wunderlich C, Strasser R H (2006). Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res, 70(1): 42–49
Pubmed
[83]
Schlegel A, Lisanti M P (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem, 275(28): 21605–21617
CrossRef Pubmed Google scholar
[84]
Schubert W, Sotgia F, Cohen A W, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti M P (2007). Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol, 170(1): 316–333
CrossRef Pubmed Google scholar
[85]
Sedding D G, Braun-Dullaeus R C (2006). Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med, 16(2): 50–55
CrossRef Pubmed Google scholar
[86]
Smith J L, Campos S K, Ozbun M A (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 81(18): 9922–9931
CrossRef Pubmed Google scholar
[87]
Sun L, Hemgård G V, Susanto S A, Wirth M (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J, 7(1): 108
CrossRef Pubmed Google scholar
[88]
Sun X H, Flynn D C, Castranova V, Millecchia L L, Beardsley A R, Liu J (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem, 282(10): 7232–7241
CrossRef Pubmed Google scholar
[89]
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S (2001). Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int, 59(2): 471–480
CrossRef Pubmed Google scholar
[90]
Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka A J, Lisanti M P (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem, 272(4): 2437–2445
CrossRef Pubmed Google scholar
[91]
Torres V A, Tapia J C, Rodríguez D A, Párraga M, Lisboa P, Montoya M, Leyton L, Quest A F (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci, 119(Pt 9): 1812–1823
CrossRef Pubmed Google scholar
[92]
Tourkina E, Richard M, Gööz P, Bonner M, Pannu J, Harley R, Bernatchez P N, Sessa W C, Silver R M, Hoffman S (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol, 294(5): L843–L861
CrossRef Pubmed Google scholar
[93]
Uittenbogaard A, Smart E J (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem, 275(33): 25595–25599
CrossRef Pubmed Google scholar
[94]
Wang C, Mei Y, Li L, Mo D, Li J, Zhang H, Tian X, Chen Y (2008). Molecular characterization and expression analysis of caveolin-1 in pig tissues. Sci China C Life Sci, 51(7): 655–661
CrossRef Pubmed Google scholar
[95]
Wang L, Mo S, Li J, Li Q, Cui Z (2010a). Preliminary study on functions of zebrafish Caveolin-1. Acta Hydrobiologica Sinica, 34(4): 1083–1090
[96]
Wang X M, Kim H P, Song R, Choi A M (2006). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol, 34(4): 434–442
CrossRef Pubmed Google scholar
[97]
Wang X M, Nadeau P E, Lo Y T, Mergia A (2010b). Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol, 84(13): 6515–6526
CrossRef Pubmed Google scholar
[98]
Williams T M, Lisanti M P (2004). The Caveolin genes: from cell biology to medicine. Ann Med, 36(8): 584–595
CrossRef Pubmed Google scholar
[99]
Williams T M, Lisanti M P (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288(3): C494–C506
CrossRef Pubmed Google scholar
[100]
Yamada E (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol, 1(5): 445–458
CrossRef Pubmed Google scholar
[101]
Yamaguchi Y, Yasuoka H, Stolz D B, Feghali-Bostwick C A (2010). Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med,
CrossRef Pubmed Google scholar
[102]
Yamamoto H, Komekado H, Kikuchi A (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell, 11(2): 213–223
CrossRef Pubmed Google scholar
[103]
Zaas D W, Swan Z, Brown B J, Wright J R, Abraham S N (2009). The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol, 2(6): 535–537
CrossRef Pubmed Google scholar
[104]
Zhang B, Peng F, Wu D, Ingram A J, Gao B, Krepinsky J C (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 19(8): 1690–1700
CrossRef Pubmed Google scholar
[105]
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov K E, Pestell R G, Lisanti M P (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem, 275(27): 20717–20725
CrossRef Pubmed Google scholar
[106]
Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q (2009). Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun, 378(1): 21–26
Pubmed
[107]
Zhu H, Cai C, Chen J (2004). Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett, 576(3): 369–374
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(209 KB)

Accesses

Citations

Detail

Sections
Recommended

/