Current development and application of soybean genomics
Received date: 19 Nov 2010
Accepted date: 23 Dec 2010
Published date: 01 Aug 2011
Copyright
Soybean (Glycine max), an important domesticated species originated in China, constitutes a major source of edible oils and high-quality plant proteins worldwide. In spite of its complex genome as a consequence of an ancient tetraploidilization, platforms for map-based genomics, sequence-based genomics, comparative genomics and functional genomics have been well developed in the last decade, thus rich repertoires of genomic tools and resources are available, which have been influencing the soybean genetic improvement. Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding, and raise the major biological questions needing to be addressed. Genetic maps, physical maps, QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine. Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes, which are instrumental to comparative genomics and functional genomics. Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process. Microarrays resources, mutagenesis and efficient transformation systems become essential components of soybean functional genomics. Furthermore, phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development, in response to abiotic stresses, functioning in plant-pathogenic microbe interactions, and controlling the oil and protein content of seed. These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.
Key words: genetic map; Glycine max; Glycine soja; soybean genomics; transgenic crop
Lingli HE , Jing ZHAO , Man ZHAO , Chaoying HE . Current development and application of soybean genomics[J]. Frontiers in Biology, 0 , 6(4) : 337 -348 . DOI: 10.1007/s11515-011-1116-8
1 |
Alkharouf N W, Matthews B F (2004). SGMD: the soybean genomics and microarray database. Nucleic Acids Res, 32(90001 Database issue): D398–D400
|
2 |
Arumuganathan K, Earle E D (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 9(3): 208–219
|
3 |
Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A J, Staswick P, Clemente T (2002). Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J, 30(2): 155–163
|
4 |
Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H (2007). QTL analysis of major agronomic traits in soybean. Agric Sci China, 6(4): 399–405
|
5 |
Chen R, Hu Z, Zhang H (2009). Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol, 51(12): 1071–1079
|
6 |
Cheng K C, Strömvik M V (2008). SoyXpress: a database for exploring the soybean transcriptome. BMC Genomics, 9(1): 368
|
7 |
Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B (2007). A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 176(1): 685–696
|
8 |
Clemente T, LaValle B J, Howe A R, Ward D C, Rozman R J, Hunter P E, Broyles D L, Kasten D S, Hinchee M A (2000). Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci, 40(3): 797–803
|
9 |
Clemente T E, Cahoon E B (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 151(3): 1030–1040
|
10 |
Cooper J L, Till B J, Laport R G, Darlow M C, Kleffner J M, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu K D, Meksem K, Comai L, Henikoff S (2008). TILLING to detect induced mutations in soybean. BMC Plant Biol, 8(1): 9
|
11 |
Coryell V H, Jessen H, Schupp J M, Webb D, Keim P (1999). Allele-specific hybridization markers for soybean. Theor Appl Genet, 98(5): 690–696
|
12 |
Cregan P B, Jarvik T, Bush A, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E (1999a). An integrated genetic linkage map of the soybean genome. Crop Sci, 39(5): 1464–1490
|
13 |
Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D (1999b). Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhg1 locus. Theor Appl Genet, 99(5): 811–817
|
14 |
Danesh D, Penuela S, Mudge J, Denny R, Nordstrom H, Martinez J, Young N D (1998). A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet, 96(2): 196–202
|
15 |
de Ronde J A, Laurie R N, Caetano T, Greyling M M, Kerepesi I (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 138(2): 123–132
|
16 |
Droste A, Pasquali G, Bodanese-Zanettini M H (2000). Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep, 18(1): 51–59
|
17 |
Du W J, Wang M, Fu S X, Yu D Y (2009). Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 36(12): 721–731
|
18 |
El-Shemy H A, Khalafalla M M, Fujita K, Ishimoto M (2006). Molecular control of gene co-suppression in transgenic soybean via particle bombardment. J Biochem Mol Biol, 39(1): 61–67
|
19 |
Falco SC, Mcgonigle B and Maxwell CA. (2005). Transgenic soybean seeds having reduced activity of lipoxygenases. Pub. No. WO/2005/089198.
|
20 |
Flor H H (1971). The current status of gene for gene concept. Annu Rev Phytopathol, 9(1): 275–296
|
21 |
Furutani N, Hidaka S, Kosaka Y, Shizukawa Y, Kanematsu S (2006). Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci, 56(2): 119–124
|
22 |
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153
|
23 |
Grant D, Nelson R T, Cannon S B, Shoemaker R C (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res, 38(Database Database issue): D843–D846
|
24 |
Guzman PS, Diers BW, Neece DJ, Martin SKSt, LeRoy AR, Grau CR, Hughes T J and Nelson RL. (2007). QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 47: 111–122
|
25 |
Haerizadeh F, Wong C E, Singh M B, Bhalla P L (2009). Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Mol Biol, 69(6): 711–727
|
26 |
He C Y, Tian A G, Zhang J S, Zhang Z Y, Gai J Y, Chen S Y (2003). Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet, 106(5): 786–793
|
27 |
He C Y, Zhang J S, Chen S Y (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 104(6-7): 1125–1131
|
28 |
Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT and Horsch RB. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol 6: 915–922.
|
29 |
Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, Fujishiro T, Yamada M, Nakayama S, Nakamura Y, Watanabe S, Harada K, Tabata S (2007). Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res, 14(6): 271–281
|
30 |
Hwang T Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S, Kono I, Hoshi M, Hanawa M, Yano C, Xia Z, Harada K, Kitamura K, Ishimoto M (2009). High-density integrated linkage map based on SSR markers in soybean. DNA Res, 16(4): 213–225
|
31 |
Hyten D L, Cannon S B, Song Q, Weeks N, Fickus E W, Shoemaker R C, Specht J E, Farmer A D, May G D, Cregan P B (2010). High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics, 11(1): 38
|
32 |
Hyten D L, Song Q, Choi I Y, Yoon M S, Specht J E, Matukumalli L K, Nelson R L, Shoemaker R C, Young N D, Cregan P B (2008). High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet, 116(7): 945–952
|
33 |
James C (2009). Global status of commercialized biotech/GM crops: The first fourteen years, 1996 to 2009. SAAA Brief No. 41. ISAAA: Ithaca, NY.
|
34 |
Keim P, Diers B W, Olson T C, Shoemaker R C (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 126(3): 735–742
|
35 |
Kerr P S, Sebastian S A (2003). Soybean products with improved carbohydrate composition and soybean plants. US Patent 6653451.
|
36 |
Kim K D, Shin J H, Van K, Kim D H, Lee S H (2009). Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol, 151(3): 1066–1076
|
37 |
Kinney A J, Jung R, Herman E M (2001). Cosuppression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell, 13(5): 1165–1178
|
38 |
Klink V P, Hosseini P, Matsye P D, Alkharouf N W, Matthews B F (2010). Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem, 48(2-3): 176–193
|
39 |
Komatsu S, Ahsan N (2009). Soybean proteomics and its application to functional analysis. J Proteomics, 72(3): 325–336
|
40 |
Krishnan H B (2005). Engineering soybean for enhanced sulfer amino acid content. Crop Sci, 45(2): 454–461
|
41 |
Lee S H (2010). The genome sequencing of Glycine soja: molecular insignts into the soybean domestication. http://www.docin.com/p-46662095.html#.
|
42 |
Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W (2010a). Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 120(7): 1405–1413
|
43 |
Li X P, Gan R, Li P L, Ma Y Y, Zhang L W, Zhang R, Wang Y, Wang N N (2006). Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol, 61(6): 829–844
|
44 |
Li Y D, Wang Y J, Tong Y P, Gao J G, Zhang J S, Chen S Y (2005). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 142(1-2): 137–142
|
45 |
Li Y H, Li W, Zhang C, Yang L, Chang R Z, Gaut B S, Qiu L J (2010b). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol, 188(1): 242–253
|
46 |
Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z, Liu Z X, Nan H Y, Chang R Z, Qiu L J (2009). Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 24(1): 63–76
|
47 |
Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 228(2): 225–240
|
48 |
Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley R J, Bilgin D D, Radwan O, Neece D J, Clough S J, May G D, Stacey G (2010a). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol, 152(2): 541–552
|
49 |
Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G (2010b). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 63(1): 86–99
|
50 |
Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger R E, Taylor C G, Xu D, Nguyen H T, Stacey G (2009). Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development. Plant Physiol, 151(3): 1207–1220
|
51 |
Libault M, Zhang X C, Govindarajulu M, Qiu J, Ong Y T, Brechenmacher L, Berg R H, Hurley-Sommer A, Taylor C G, Stacey G (2010c). A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J, 62(5): 852–864
|
52 |
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J (2007). QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot (Lond), 100(5): 1027–1038
|
53 |
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010). The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 153(1): 198–210
|
54 |
Liu J, Ha D, Xie Z, Wang C, Wang H, Zhang W, Zhang J, Chen S (2008a). Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity. J Genet Genomics, 35(7): 441–449
|
55 |
Liu S J, Wei Z M, Huang J Q (2008b). The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep, 27(3): 489–498
|
56 |
Luo G Z, Wang H W, Huang J, Tian A G, Wang Y J, Zhang J S, Chen S Y (2005). A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 59(5): 809–820
|
57 |
Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 50(7): 1260–1276
|
58 |
Marek L F, Mudge J, Darnielle L, Grant D, Hanson N, Paz M, Huihuang Y, Denny R, Larson K, Foster-Hartnett D, Cooper A, Danesh D, Larsen D, Schmidt T, Staggs R, Crow J A, Retzel E, Young N D, Shoemaker R C (2001). Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome, 44(4): 572–581
|
59 |
Marek L F, Shoemaker R C (1997). BAC contig development by fingerprint analysis in soybean. Genome, 40(4): 420–427
|
60 |
Mathieu M, Winters E K, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker R C, Stacey G, Clemente T (2009). Establishment of a soybean (Glycine max Merr. L.) transposon-based mutagenesis repository. Planta, 229(2): 279–289
|
61 |
Matthews B F, Devine T E, Weisemann J M, Beard H S, Lewers K S, MacDonald M H, Park Y B, Maiti R, Lin J J, Kuo J, Pedroni M J, Cregan P B, Saunders J A (2001). Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci, 41(2): 516–521
|
62 |
McPherson R M, MacRae T C (2009). Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol, 102(4): 1640–1648
|
63 |
Meksem K, Ruben E, Zobrist K, Zhang H B, Lightfoot D (2000). Two large insert libraries for soybean: Application in cyst nematode resistance and genome wide physical mapping. Theor Appl Genet, 101: 747–755
|
64 |
Men A E, Laniya T S, Searle I R, Iturbe-Ormaetxe I, Gresshoff I, Jiang Q, Carroll B J, Gresshoff P M (2002). Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett, 13(3): 147–155
|
65 |
Moravec T, Schmidt M A, Herman E M, Woodford-Thomas T (2007). Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine, 25(9): 1647–1657
|
66 |
Moschini G, Lapan H, Sobolevsky A (2000). Roundup Ready soybeans and welfare effects in the soybean complex. Agribusiness, 16(1): 33–55
|
67 |
Nunes A C, Vianna G R, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech E L, Aragão F J (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta, 224(1): 125–132
|
68 |
Ohkama N, Goto D B, Fujiwara T, Naito S (2002). Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol, 43(11): 1266–1275
|
69 |
Olhoft P M, Flagel L E, Donovan C M, Somers D A (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 216(5): 723–735
|
100 |
PalmerR G, Ortiz-PerezE, Cervantes-Martinez I G, WileyH, Hamlin S J, Healy R A, Horner H T, Davis W H (2003). Hybrid soybean–current status and future outlook. In: Proceedings of the 33rd Soybean Seed Research Conference, Washington, DC: American Seed Trade Association,267–304
|
70 |
Perez P T, Cianzio S R, Palmer R G (2009). Evaluation of soybean [Glycine max (L.) Merr.] F1 hybrids. J Crop Improv, 23(1): 1–18
|
71 |
Qiu B X, Sleper D A, Rao-Arelli A P (1997). Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1, 3 and 5 in Peking. Euphytica, 96(2): 225–231
|
72 |
Raymer P L, Grey T L (2003). Challenges in comparing transgenic and nontransgenic soybean cultivars. Crop Sci, 43(5): 1584–1589
|
73 |
Rech E L, Vianna G R, Aragão F J (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc, 3(3): 410–418
|
74 |
Salimath S, Bhattacharyya M K (1999). Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene. Theor Appl Genet, 98(5): 712–720
|
75 |
Santra D K, Sandhu D, Tai T, Bhattacharyya M K (2003). Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region. Funct Integr Genomics, 3(4): 153–159
|
76 |
Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci, 176(4): 514–521
|
77 |
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278): 178–183
|
78 |
Schupp J M, Dick A B, Zinnamon K N, Keim P (2001). Serial analysis of gene expression applied to soybean. Plant & Animal Genome IX Conference, Town & Country Hotel, San Diego, CA. http://www.intl-pag.org/9/abstracts/P08_14.html.
|
79 |
Seo J K, Hwang S H, Kang S H, Choi H S, Lee S H, Sohn S H, Kim K H (2007). Interaction study of soybean mosaic virus proteins with soybean proteins using the yeast-two hybrid system. Plant Pathol J, 23(4): 281–286
|
80 |
Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 25(8): 930–937
|
81 |
Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton S W, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop E G, Vielweber C J, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002). A compilation of soybean ESTs: generation and analysis. Genome, 45(2): 329–338
|
82 |
Shoemaker R C, Grant D, Olson T, Warren W C, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton S W, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S (2008). Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 51(4): 294–302
|
83 |
Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R (1996). Genome duplication in soybean (Glycine subgenus soja). Genetics, 144(1): 329–338
|
84 |
Shoemaker R C, Schlueter J, Doyle J J (2006). Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol, 9(2): 104–109
|
85 |
Shultz J L, Kazi S, Bashir R, Afzal J A, Lightfoot D A (2007). The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet, 114(6): 1081–1090
|
86 |
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet, 109(1): 122–128
|
87 |
Stacey G, Libault M, Brechenmacher L, Wan J, May G D (2006). Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol, 9(2): 110–121
|
88 |
Subramanian S, Graham M Y, Yu O, Graham T L (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol, 137(4): 1345–1353
|
89 |
Sun H, Zhao L M, Huang M (1994). Studies on cytoplasmic-nuclear male sterile soybean. Chin Sci Bull, 39(2): 175
|
90 |
Tanksley S D, McCouch S R (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329): 1063–1066
|
91 |
Tian A G, Wang J, Cui P, Han Y J, Xu H, Cong L J, Huang X G, Wang X L, Jiao Y Z, Wang B J, Wang Y J, Zhang J S, Chen S Y (2004). Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet, 108(5): 903–913
|
92 |
Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J (2010). Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 107(19): 8563–8568
|
93 |
Tomkins J P, Mahalingam R, Smith H, Goicoechea J L, Knap H T, Wing R A (1999). A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol, 41(1): 25–32
|
94 |
Wang B J, Wang Y J, Wang Q, Luo G Z, Zhang Z G, He C Y, He S J, Zhang J S, Gai J Y, Chen S Y (2004a). Characterization of an NBS-LRR resistance gene homologue from soybean. J Plant Physiol, 161(7): 815–822
|
95 |
Wang C M, Wang H W, Zhang J S, Chen S Y (2008). A seed-specific AP2-domain transcription factor from soybean pays a certain role in regulation of seed germination. Sci in China, 51: 336–345 (Series C)
|
96 |
Wang D, Arelli P R, Shoemaker R C, Diers B W (2001). Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet, 103(4): 561–566
|
97 |
Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y (2007). The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J, 52(4): 716–729
|
98 |
Wang Y, Suo H, Zheng Y, Liu K, Zhuang C, Kahle K T, Ma H, Yan X (2010). The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant J, 64(2): 230–242
|
99 |
Wang Y J, Dongfang Y, Wang X Q, Yang Y L, Yu D Y, Gai J Y, Wu X L, He C Y, Zhang J S, Chen S Y (2004b). Mapping of five genes resistant to SMV strains in soybean. Yi Chuan Xue Bao, 31(1): 87–90
|
100 |
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 182(4): 1251–1262
|
101 |
Wei W, Huang J, Hao Y J, Zou H F, Wang H W, Zhao J Y, Liu X Y, Zhang W K, Ma B, Zhang J S, Chen S Y (2009). Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE, 4(9): e7209
|
102 |
Wong C E, Singh M B, Bhalla P L (2009). Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J, 57(5): 832–845
|
103 |
Wu C, Sun S, Nimmakayala P, Santos F A, Meksem K, Springman R, Ding K, Lightfoot D A, Zhang H B (2004). A BAC- and BIBAC-based physical map of the soybean genome. Genome Res, 14(2): 319–326
|
104 |
Wu X, Blake S, Sleper D A, Shannon J G, Cregan P, Nguyen H T (2009). QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 118(6): 1093–1105
|
105 |
Wu X L, He C Y, Wang Y J, Zhang Z Y, Dongfang Y, Zhang J S, Chen S Y, Gai J Y (2001a). Construction and analysis of a genetic linkage map of soybean. Yi Chuan Xue Bao, 28(11): 1051–1061
|
106 |
Wu X L, Wang Y J, He C Y, Chen S Y, Gai J Y, Wang X C (2001b). QTLs mapping of some agronomic traits of soybean. Yi Chuan Xue Bao, 28(10): 947–955
|
107 |
Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, Chen S Y (2009). Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE, 4(9): e6898
|
108 |
Yang J Y, Gai J Y (2009). Heterosis, combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agron Sin, 35(4): 620–630
|
109 |
Yang K, Moon J K, Jeong N, Back K, Kim H M, Jeong S C (2008). Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics, 92(1): 52–59
|
110 |
Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010). A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J, 62(6): 1019–1034
|
111 |
Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y (2004). QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 108(6): 1131–1139
|
112 |
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 6(5): 486–503
|
113 |
Zhu S, Saski C A, Boerma H R, Tomkins J P, All J N, Parrott W A (2009). Construction of a BAC library for a defoliating insect-resistant soybean and identification of candidate clones using a novel approach. Plant Mol Biol Rep, 27(2): 229–235
|
114 |
Zhu T, Shi I, Funke R P, Gresshoff P M, Keim P (1996). Characterization and application of soybean YACs to molecular cytogenetics. Mol Gen Genet, 252(4): 483–488
|
115 |
Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B (2003). Single-nucleotide polymorphisms in soybean. Genetics, 163(3): 1123–1134
|
/
〈 | 〉 |