REVIEW

Current development and application of soybean genomics

  • Lingli HE 1,2 ,
  • Jing ZHAO 1,2 ,
  • Man ZHAO 1,2 ,
  • Chaoying HE , 1
Expand
  • 1. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • 2. Graduate University, Chinese Academy of Sciences, Beijing 100049, China

Received date: 19 Nov 2010

Accepted date: 23 Dec 2010

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Soybean (Glycine max), an important domesticated species originated in China, constitutes a major source of edible oils and high-quality plant proteins worldwide. In spite of its complex genome as a consequence of an ancient tetraploidilization, platforms for map-based genomics, sequence-based genomics, comparative genomics and functional genomics have been well developed in the last decade, thus rich repertoires of genomic tools and resources are available, which have been influencing the soybean genetic improvement. Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding, and raise the major biological questions needing to be addressed. Genetic maps, physical maps, QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine. Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes, which are instrumental to comparative genomics and functional genomics. Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process. Microarrays resources, mutagenesis and efficient transformation systems become essential components of soybean functional genomics. Furthermore, phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development, in response to abiotic stresses, functioning in plant-pathogenic microbe interactions, and controlling the oil and protein content of seed. These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

Cite this article

Lingli HE , Jing ZHAO , Man ZHAO , Chaoying HE . Current development and application of soybean genomics[J]. Frontiers in Biology, 0 , 6(4) : 337 -348 . DOI: 10.1007/s11515-011-1116-8

Acknowledgements

We thank Frau Guofang Wei (Institute of Botany, CAS) for literature collection and we do apologize to colleagues whose work was not discussed owing to space constraints. We also thank Prof. Shouyi Chen (Institute of Genetics and Development, CAS) for her valuable comments to improve the manuscript. This work was supported by National Genetically Modified Organisms Breeding Special Projects of Chinese Agriculture Ministry (No. 2009ZX08009-011B) and by the Hundred Talents Project of the Chinese Academy of Sciences to CYH.
1
Alkharouf N W, Matthews B F (2004). SGMD: the soybean genomics and microarray database. Nucleic Acids Res, 32(90001 Database issue): D398–D400

DOI PMID

2
Arumuganathan K, Earle E D (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 9(3): 208–219

DOI

3
Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A J, Staswick P, Clemente T (2002). Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J, 30(2): 155–163

DOI PMID

4
Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H (2007). QTL analysis of major agronomic traits in soybean. Agric Sci China, 6(4): 399–405

DOI

5
Chen R, Hu Z, Zhang H (2009). Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol, 51(12): 1071–1079

DOI PMID

6
Cheng K C, Strömvik M V (2008). SoyXpress: a database for exploring the soybean transcriptome. BMC Genomics, 9(1): 368

DOI PMID

7
Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B (2007). A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 176(1): 685–696

DOI PMID

8
Clemente T, LaValle B J, Howe A R, Ward D C, Rozman R J, Hunter P E, Broyles D L, Kasten D S, Hinchee M A (2000). Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci, 40(3): 797–803

DOI

9
Clemente T E, Cahoon E B (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 151(3): 1030–1040

DOI PMID

10
Cooper J L, Till B J, Laport R G, Darlow M C, Kleffner J M, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu K D, Meksem K, Comai L, Henikoff S (2008). TILLING to detect induced mutations in soybean. BMC Plant Biol, 8(1): 9

DOI PMID

11
Coryell V H, Jessen H, Schupp J M, Webb D, Keim P (1999). Allele-specific hybridization markers for soybean. Theor Appl Genet, 98(5): 690–696

DOI

12
Cregan P B, Jarvik T, Bush A, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E (1999a). An integrated genetic linkage map of the soybean genome. Crop Sci, 39(5): 1464–1490

DOI

13
Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D (1999b). Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhg1 locus. Theor Appl Genet, 99(5): 811–817

DOI

14
Danesh D, Penuela S, Mudge J, Denny R, Nordstrom H, Martinez J, Young N D (1998). A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet, 96(2): 196–202

DOI

15
de Ronde J A, Laurie R N, Caetano T, Greyling M M, Kerepesi I (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 138(2): 123–132

DOI

16
Droste A, Pasquali G, Bodanese-Zanettini M H (2000). Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep, 18(1): 51–59

DOI

17
Du W J, Wang M, Fu S X, Yu D Y (2009). Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 36(12): 721–731

DOI PMID

18
El-Shemy H A, Khalafalla M M, Fujita K, Ishimoto M (2006). Molecular control of gene co-suppression in transgenic soybean via particle bombardment. J Biochem Mol Biol, 39(1): 61–67

PMID

19
Falco SC, Mcgonigle B and Maxwell CA. (2005). Transgenic soybean seeds having reduced activity of lipoxygenases. Pub. No. WO/2005/089198.

20
Flor H H (1971). The current status of gene for gene concept. Annu Rev Phytopathol, 9(1): 275–296

DOI

21
Furutani N, Hidaka S, Kosaka Y, Shizukawa Y, Kanematsu S (2006). Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci, 56(2): 119–124

DOI

22
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153

DOI PMID

23
Grant D, Nelson R T, Cannon S B, Shoemaker R C (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res, 38(Database Database issue): D843–D846

DOI PMID

24
Guzman PS, Diers BW, Neece DJ, Martin SKSt, LeRoy AR, Grau CR, Hughes T J and Nelson RL. (2007). QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 47: 111–122

DOI

25
Haerizadeh F, Wong C E, Singh M B, Bhalla P L (2009). Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Mol Biol, 69(6): 711–727

DOI PMID

26
He C Y, Tian A G, Zhang J S, Zhang Z Y, Gai J Y, Chen S Y (2003). Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet, 106(5): 786–793

PMID

27
He C Y, Zhang J S, Chen S Y (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 104(6-7): 1125–1131

DOI PMID

28
Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT and Horsch RB. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol 6: 915–922.

29
Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, Fujishiro T, Yamada M, Nakayama S, Nakamura Y, Watanabe S, Harada K, Tabata S (2007). Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res, 14(6): 271–281

DOI PMID

30
Hwang T Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S, Kono I, Hoshi M, Hanawa M, Yano C, Xia Z, Harada K, Kitamura K, Ishimoto M (2009). High-density integrated linkage map based on SSR markers in soybean. DNA Res, 16(4): 213–225

DOI PMID

31
Hyten D L, Cannon S B, Song Q, Weeks N, Fickus E W, Shoemaker R C, Specht J E, Farmer A D, May G D, Cregan P B (2010). High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics, 11(1): 38

DOI PMID

32
Hyten D L, Song Q, Choi I Y, Yoon M S, Specht J E, Matukumalli L K, Nelson R L, Shoemaker R C, Young N D, Cregan P B (2008). High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet, 116(7): 945–952

DOI PMID

33
James C (2009). Global status of commercialized biotech/GM crops: The first fourteen years, 1996 to 2009. SAAA Brief No. 41. ISAAA: Ithaca, NY.

34
Keim P, Diers B W, Olson T C, Shoemaker R C (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 126(3): 735–742

PMID

35
Kerr P S, Sebastian S A (2003). Soybean products with improved carbohydrate composition and soybean plants. US Patent 6653451.

36
Kim K D, Shin J H, Van K, Kim D H, Lee S H (2009). Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol, 151(3): 1066–1076

DOI PMID

37
Kinney A J, Jung R, Herman E M (2001). Cosuppression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell, 13(5): 1165–1178

PMID

38
Klink V P, Hosseini P, Matsye P D, Alkharouf N W, Matthews B F (2010). Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem, 48(2-3): 176–193

DOI PMID

39
Komatsu S, Ahsan N (2009). Soybean proteomics and its application to functional analysis. J Proteomics, 72(3): 325–336

DOI PMID

40
Krishnan H B (2005). Engineering soybean for enhanced sulfer amino acid content. Crop Sci, 45(2): 454–461

DOI

41
Lee S H (2010). The genome sequencing of Glycine soja: molecular insignts into the soybean domestication. http://www.docin.com/p-46662095.html#.

42
Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W (2010a). Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 120(7): 1405–1413

DOI PMID

43
Li X P, Gan R, Li P L, Ma Y Y, Zhang L W, Zhang R, Wang Y, Wang N N (2006). Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol, 61(6): 829–844

DOI PMID

44
Li Y D, Wang Y J, Tong Y P, Gao J G, Zhang J S, Chen S Y (2005). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 142(1-2): 137–142

DOI

45
Li Y H, Li W, Zhang C, Yang L, Chang R Z, Gaut B S, Qiu L J (2010b). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol, 188(1): 242–253

DOI PMID

46
Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z, Liu Z X, Nan H Y, Chang R Z, Qiu L J (2009). Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 24(1): 63–76

DOI

47
Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 228(2): 225–240

DOI PMID

48
Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley R J, Bilgin D D, Radwan O, Neece D J, Clough S J, May G D, Stacey G (2010a). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol, 152(2): 541–552

DOI PMID

49
Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G (2010b). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 63(1): 86–99

PMID

50
Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger R E, Taylor C G, Xu D, Nguyen H T, Stacey G (2009). Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development. Plant Physiol, 151(3): 1207–1220

DOI PMID

51
Libault M, Zhang X C, Govindarajulu M, Qiu J, Ong Y T, Brechenmacher L, Berg R H, Hurley-Sommer A, Taylor C G, Stacey G (2010c). A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J, 62(5): 852–864

DOI PMID

52
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J (2007). QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot (Lond), 100(5): 1027–1038

DOI PMID

53
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010). The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 153(1): 198–210

DOI PMID

54
Liu J, Ha D, Xie Z, Wang C, Wang H, Zhang W, Zhang J, Chen S (2008a). Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity. J Genet Genomics, 35(7): 441–449

DOI PMID

55
Liu S J, Wei Z M, Huang J Q (2008b). The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep, 27(3): 489–498

DOI PMID

56
Luo G Z, Wang H W, Huang J, Tian A G, Wang Y J, Zhang J S, Chen S Y (2005). A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 59(5): 809–820

DOI PMID

57
Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 50(7): 1260–1276

DOI PMID

58
Marek L F, Mudge J, Darnielle L, Grant D, Hanson N, Paz M, Huihuang Y, Denny R, Larson K, Foster-Hartnett D, Cooper A, Danesh D, Larsen D, Schmidt T, Staggs R, Crow J A, Retzel E, Young N D, Shoemaker R C (2001). Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome, 44(4): 572–581

DOI PMID

59
Marek L F, Shoemaker R C (1997). BAC contig development by fingerprint analysis in soybean. Genome, 40(4): 420–427

DOI PMID

60
Mathieu M, Winters E K, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker R C, Stacey G, Clemente T (2009). Establishment of a soybean (Glycine max Merr. L.) transposon-based mutagenesis repository. Planta, 229(2): 279–289

DOI PMID

61
Matthews B F, Devine T E, Weisemann J M, Beard H S, Lewers K S, MacDonald M H, Park Y B, Maiti R, Lin J J, Kuo J, Pedroni M J, Cregan P B, Saunders J A (2001). Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci, 41(2): 516–521

DOI

62
McPherson R M, MacRae T C (2009). Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol, 102(4): 1640–1648

DOI PMID

63
Meksem K, Ruben E, Zobrist K, Zhang H B, Lightfoot D (2000). Two large insert libraries for soybean: Application in cyst nematode resistance and genome wide physical mapping. Theor Appl Genet, 101: 747–755

DOI

64
Men A E, Laniya T S, Searle I R, Iturbe-Ormaetxe I, Gresshoff I, Jiang Q, Carroll B J, Gresshoff P M (2002). Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett, 13(3): 147–155

DOI

65
Moravec T, Schmidt M A, Herman E M, Woodford-Thomas T (2007). Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine, 25(9): 1647–1657

DOI PMID

66
Moschini G, Lapan H, Sobolevsky A (2000). Roundup Ready soybeans and welfare effects in the soybean complex. Agribusiness, 16(1): 33–55

DOI

67
Nunes A C, Vianna G R, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech E L, Aragão F J (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta, 224(1): 125–132

DOI PMID

68
Ohkama N, Goto D B, Fujiwara T, Naito S (2002). Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol, 43(11): 1266–1275

DOI PMID

69
Olhoft P M, Flagel L E, Donovan C M, Somers D A (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 216(5): 723–735

PMID

100
PalmerR G, Ortiz-PerezE, Cervantes-Martinez I G, WileyH, Hamlin S J, Healy R A, Horner H T, Davis W H (2003). Hybrid soybean–current status and future outlook. In: Proceedings of the 33rd Soybean Seed Research Conference, Washington, DC: American Seed Trade Association,267–304

70
Perez P T, Cianzio S R, Palmer R G (2009). Evaluation of soybean [Glycine max (L.) Merr.] F1 hybrids. J Crop Improv, 23(1): 1–18

DOI

71
Qiu B X, Sleper D A, Rao-Arelli A P (1997). Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1, 3 and 5 in Peking. Euphytica, 96(2): 225–231

DOI

72
Raymer P L, Grey T L (2003). Challenges in comparing transgenic and nontransgenic soybean cultivars. Crop Sci, 43(5): 1584–1589

DOI

73
Rech E L, Vianna G R, Aragão F J (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc, 3(3): 410–418

DOI PMID

74
Salimath S, Bhattacharyya M K (1999). Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene. Theor Appl Genet, 98(5): 712–720

DOI

75
Santra D K, Sandhu D, Tai T, Bhattacharyya M K (2003). Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region. Funct Integr Genomics, 3(4): 153–159

DOI PMID

76
Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci, 176(4): 514–521

DOI

77
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278): 178–183

DOI PMID

78
Schupp J M, Dick A B, Zinnamon K N, Keim P (2001). Serial analysis of gene expression applied to soybean. Plant & Animal Genome IX Conference, Town & Country Hotel, San Diego, CA. http://www.intl-pag.org/9/abstracts/P08_14.html.

79
Seo J K, Hwang S H, Kang S H, Choi H S, Lee S H, Sohn S H, Kim K H (2007). Interaction study of soybean mosaic virus proteins with soybean proteins using the yeast-two hybrid system. Plant Pathol J, 23(4): 281–286

DOI

80
Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 25(8): 930–937

DOI PMID

81
Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton S W, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop E G, Vielweber C J, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002). A compilation of soybean ESTs: generation and analysis. Genome, 45(2): 329–338

DOI PMID

82
Shoemaker R C, Grant D, Olson T, Warren W C, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton S W, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S (2008). Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 51(4): 294–302

DOI PMID

83
Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R (1996). Genome duplication in soybean (Glycine subgenus soja). Genetics, 144(1): 329–338

PMID

84
Shoemaker R C, Schlueter J, Doyle J J (2006). Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol, 9(2): 104–109

DOI PMID

85
Shultz J L, Kazi S, Bashir R, Afzal J A, Lightfoot D A (2007). The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet, 114(6): 1081–1090

DOI PMID

86
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet, 109(1): 122–128

DOI PMID

87
Stacey G, Libault M, Brechenmacher L, Wan J, May G D (2006). Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol, 9(2): 110–121

DOI PMID

88
Subramanian S, Graham M Y, Yu O, Graham T L (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol, 137(4): 1345–1353

DOI PMID

89
Sun H, Zhao L M, Huang M (1994). Studies on cytoplasmic-nuclear male sterile soybean. Chin Sci Bull, 39(2): 175

90
Tanksley S D, McCouch S R (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329): 1063–1066

DOI PMID

91
Tian A G, Wang J, Cui P, Han Y J, Xu H, Cong L J, Huang X G, Wang X L, Jiao Y Z, Wang B J, Wang Y J, Zhang J S, Chen S Y (2004). Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet, 108(5): 903–913

DOI PMID

92
Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J (2010). Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 107(19): 8563–8568

DOI PMID

93
Tomkins J P, Mahalingam R, Smith H, Goicoechea J L, Knap H T, Wing R A (1999). A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol, 41(1): 25–32

DOI PMID

94
Wang B J, Wang Y J, Wang Q, Luo G Z, Zhang Z G, He C Y, He S J, Zhang J S, Gai J Y, Chen S Y (2004a). Characterization of an NBS-LRR resistance gene homologue from soybean. J Plant Physiol, 161(7): 815–822

DOI PMID

95
Wang C M, Wang H W, Zhang J S, Chen S Y (2008). A seed-specific AP2-domain transcription factor from soybean pays a certain role in regulation of seed germination. Sci in China, 51: 336–345 (Series C)

96
Wang D, Arelli P R, Shoemaker R C, Diers B W (2001). Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet, 103(4): 561–566

DOI

97
Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y (2007). The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J, 52(4): 716–729

DOI PMID

98
Wang Y, Suo H, Zheng Y, Liu K, Zhuang C, Kahle K T, Ma H, Yan X (2010). The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant J, 64(2): 230–242

DOI PMID

99
Wang Y J, Dongfang Y, Wang X Q, Yang Y L, Yu D Y, Gai J Y, Wu X L, He C Y, Zhang J S, Chen S Y (2004b). Mapping of five genes resistant to SMV strains in soybean. Yi Chuan Xue Bao, 31(1): 87–90

PMID

100
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 182(4): 1251–1262

DOI PMID

101
Wei W, Huang J, Hao Y J, Zou H F, Wang H W, Zhao J Y, Liu X Y, Zhang W K, Ma B, Zhang J S, Chen S Y (2009). Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE, 4(9): e7209

DOI PMID

102
Wong C E, Singh M B, Bhalla P L (2009). Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J, 57(5): 832–845

DOI PMID

103
Wu C, Sun S, Nimmakayala P, Santos F A, Meksem K, Springman R, Ding K, Lightfoot D A, Zhang H B (2004). A BAC- and BIBAC-based physical map of the soybean genome. Genome Res, 14(2): 319–326

DOI PMID

104
Wu X, Blake S, Sleper D A, Shannon J G, Cregan P, Nguyen H T (2009). QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 118(6): 1093–1105

DOI PMID

105
Wu X L, He C Y, Wang Y J, Zhang Z Y, Dongfang Y, Zhang J S, Chen S Y, Gai J Y (2001a). Construction and analysis of a genetic linkage map of soybean. Yi Chuan Xue Bao, 28(11): 1051–1061

PMID

106
Wu X L, Wang Y J, He C Y, Chen S Y, Gai J Y, Wang X C (2001b). QTLs mapping of some agronomic traits of soybean. Yi Chuan Xue Bao, 28(10): 947–955

PMID

107
Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, Chen S Y (2009). Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE, 4(9): e6898

DOI PMID

108
Yang J Y, Gai J Y (2009). Heterosis, combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agron Sin, 35(4): 620–630

DOI

109
Yang K, Moon J K, Jeong N, Back K, Kim H M, Jeong S C (2008). Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics, 92(1): 52–59

DOI PMID

110
Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010). A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J, 62(6): 1019–1034

PMID

111
Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y (2004). QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 108(6): 1131–1139

DOI PMID

112
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 6(5): 486–503

DOI PMID

113
Zhu S, Saski C A, Boerma H R, Tomkins J P, All J N, Parrott W A (2009). Construction of a BAC library for a defoliating insect-resistant soybean and identification of candidate clones using a novel approach. Plant Mol Biol Rep, 27(2): 229–235

DOI

114
Zhu T, Shi I, Funke R P, Gresshoff P M, Keim P (1996). Characterization and application of soybean YACs to molecular cytogenetics. Mol Gen Genet, 252(4): 483–488

DOI PMID

115
Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B (2003). Single-nucleotide polymorphisms in soybean. Genetics, 163(3): 1123–1134

PMID

Outlines

/