Current development and application of soybean genomics
Lingli HE, Jing ZHAO, Man ZHAO, Chaoying HE
Current development and application of soybean genomics
Soybean (Glycine max), an important domesticated species originated in China, constitutes a major source of edible oils and high-quality plant proteins worldwide. In spite of its complex genome as a consequence of an ancient tetraploidilization, platforms for map-based genomics, sequence-based genomics, comparative genomics and functional genomics have been well developed in the last decade, thus rich repertoires of genomic tools and resources are available, which have been influencing the soybean genetic improvement. Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding, and raise the major biological questions needing to be addressed. Genetic maps, physical maps, QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine. Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes, which are instrumental to comparative genomics and functional genomics. Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process. Microarrays resources, mutagenesis and efficient transformation systems become essential components of soybean functional genomics. Furthermore, phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development, in response to abiotic stresses, functioning in plant-pathogenic microbe interactions, and controlling the oil and protein content of seed. These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.
genetic map / Glycine max / Glycine soja / soybean genomics / transgenic crop
[1] |
Alkharouf N W, Matthews B F (2004). SGMD: the soybean genomics and microarray database. Nucleic Acids Res, 32(90001 Database issue): D398–D400
CrossRef
Pubmed
Google scholar
|
[2] |
Arumuganathan K, Earle E D (1991). Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 9(3): 208–219
CrossRef
Google scholar
|
[3] |
Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A J, Staswick P, Clemente T (2002). Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J, 30(2): 155–163
CrossRef
Pubmed
Google scholar
|
[4] |
Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H (2007). QTL analysis of major agronomic traits in soybean. Agric Sci China, 6(4): 399–405
CrossRef
Google scholar
|
[5] |
Chen R, Hu Z, Zhang H (2009). Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol, 51(12): 1071–1079
CrossRef
Pubmed
Google scholar
|
[6] |
Cheng K C, Strömvik M V (2008). SoyXpress: a database for exploring the soybean transcriptome. BMC Genomics, 9(1): 368
CrossRef
Pubmed
Google scholar
|
[7] |
Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B (2007). A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 176(1): 685–696
CrossRef
Pubmed
Google scholar
|
[8] |
Clemente T, LaValle B J, Howe A R, Ward D C, Rozman R J, Hunter P E, Broyles D L, Kasten D S, Hinchee M A (2000). Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci, 40(3): 797–803
CrossRef
Google scholar
|
[9] |
Clemente T E, Cahoon E B (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 151(3): 1030–1040
CrossRef
Pubmed
Google scholar
|
[10] |
Cooper J L, Till B J, Laport R G, Darlow M C, Kleffner J M, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu K D, Meksem K, Comai L, Henikoff S (2008). TILLING to detect induced mutations in soybean. BMC Plant Biol, 8(1): 9
CrossRef
Pubmed
Google scholar
|
[11] |
Coryell V H, Jessen H, Schupp J M, Webb D, Keim P (1999). Allele-specific hybridization markers for soybean. Theor Appl Genet, 98(5): 690–696
CrossRef
Google scholar
|
[12] |
Cregan P B, Jarvik T, Bush A, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E (1999a). An integrated genetic linkage map of the soybean genome. Crop Sci, 39(5): 1464–1490
CrossRef
Google scholar
|
[13] |
Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D (1999b). Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhg1 locus. Theor Appl Genet, 99(5): 811–817
CrossRef
Google scholar
|
[14] |
Danesh D, Penuela S, Mudge J, Denny R, Nordstrom H, Martinez J, Young N D (1998). A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet, 96(2): 196–202
CrossRef
Google scholar
|
[15] |
de Ronde J A, Laurie R N, Caetano T, Greyling M M, Kerepesi I (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 138(2): 123–132
CrossRef
Google scholar
|
[16] |
Droste A, Pasquali G, Bodanese-Zanettini M H (2000). Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep, 18(1): 51–59
CrossRef
Google scholar
|
[17] |
Du W J, Wang M, Fu S X, Yu D Y (2009). Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 36(12): 721–731
CrossRef
Pubmed
Google scholar
|
[18] |
El-Shemy H A, Khalafalla M M, Fujita K, Ishimoto M (2006). Molecular control of gene co-suppression in transgenic soybean via particle bombardment. J Biochem Mol Biol, 39(1): 61–67
Pubmed
|
[19] |
Falco SC, Mcgonigle B and Maxwell CA. (2005). Transgenic soybean seeds having reduced activity of lipoxygenases. Pub. No. WO/2005/089198.
|
[20] |
Flor H H (1971). The current status of gene for gene concept. Annu Rev Phytopathol, 9(1): 275–296
CrossRef
Google scholar
|
[21] |
Furutani N, Hidaka S, Kosaka Y, Shizukawa Y, Kanematsu S (2006). Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci, 56(2): 119–124
CrossRef
Google scholar
|
[22] |
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153
CrossRef
Pubmed
Google scholar
|
[23] |
Grant D, Nelson R T, Cannon S B, Shoemaker R C (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res, 38(Database Database issue): D843–D846
CrossRef
Pubmed
Google scholar
|
[24] |
Guzman PS, Diers BW, Neece DJ, Martin SKSt, LeRoy AR, Grau CR, Hughes T J and Nelson RL. (2007). QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 47: 111–122
CrossRef
Google scholar
|
[25] |
Haerizadeh F, Wong C E, Singh M B, Bhalla P L (2009). Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Mol Biol, 69(6): 711–727
CrossRef
Pubmed
Google scholar
|
[26] |
He C Y, Tian A G, Zhang J S, Zhang Z Y, Gai J Y, Chen S Y (2003). Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet, 106(5): 786–793
Pubmed
|
[27] |
He C Y, Zhang J S, Chen S Y (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 104(6-7): 1125–1131
CrossRef
Pubmed
Google scholar
|
[28] |
Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT and Horsch RB. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol 6: 915–922.
|
[29] |
Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, Fujishiro T, Yamada M, Nakayama S, Nakamura Y, Watanabe S, Harada K, Tabata S (2007). Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res, 14(6): 271–281
CrossRef
Pubmed
Google scholar
|
[30] |
Hwang T Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S, Kono I, Hoshi M, Hanawa M, Yano C, Xia Z, Harada K, Kitamura K, Ishimoto M (2009). High-density integrated linkage map based on SSR markers in soybean. DNA Res, 16(4): 213–225
CrossRef
Pubmed
Google scholar
|
[31] |
Hyten D L, Cannon S B, Song Q, Weeks N, Fickus E W, Shoemaker R C, Specht J E, Farmer A D, May G D, Cregan P B (2010). High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics, 11(1): 38
CrossRef
Pubmed
Google scholar
|
[32] |
Hyten D L, Song Q, Choi I Y, Yoon M S, Specht J E, Matukumalli L K, Nelson R L, Shoemaker R C, Young N D, Cregan P B (2008). High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet, 116(7): 945–952
CrossRef
Pubmed
Google scholar
|
[33] |
James C (2009). Global status of commercialized biotech/GM crops: The first fourteen years, 1996 to 2009. SAAA Brief No. 41. ISAAA: Ithaca, NY.
|
[34] |
Keim P, Diers B W, Olson T C, Shoemaker R C (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 126(3): 735–742
Pubmed
|
[35] |
Kerr P S, Sebastian S A (2003). Soybean products with improved carbohydrate composition and soybean plants. US Patent 6653451.
|
[36] |
Kim K D, Shin J H, Van K, Kim D H, Lee S H (2009). Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol, 151(3): 1066–1076
CrossRef
Pubmed
Google scholar
|
[37] |
Kinney A J, Jung R, Herman E M (2001). Cosuppression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell, 13(5): 1165–1178
Pubmed
|
[38] |
Klink V P, Hosseini P, Matsye P D, Alkharouf N W, Matthews B F (2010). Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem, 48(2-3): 176–193
CrossRef
Pubmed
Google scholar
|
[39] |
Komatsu S, Ahsan N (2009). Soybean proteomics and its application to functional analysis. J Proteomics, 72(3): 325–336
CrossRef
Pubmed
Google scholar
|
[40] |
Krishnan H B (2005). Engineering soybean for enhanced sulfer amino acid content. Crop Sci, 45(2): 454–461
CrossRef
Google scholar
|
[41] |
Lee S H (2010). The genome sequencing of Glycine soja: molecular insignts into the soybean domestication. http://www.docin.com/p-46662095.html#.
|
[42] |
Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W (2010a). Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 120(7): 1405–1413
CrossRef
Pubmed
Google scholar
|
[43] |
Li X P, Gan R, Li P L, Ma Y Y, Zhang L W, Zhang R, Wang Y, Wang N N (2006). Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol, 61(6): 829–844
CrossRef
Pubmed
Google scholar
|
[44] |
Li Y D, Wang Y J, Tong Y P, Gao J G, Zhang J S, Chen S Y (2005). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 142(1-2): 137–142
CrossRef
Google scholar
|
[45] |
Li Y H, Li W, Zhang C, Yang L, Chang R Z, Gaut B S, Qiu L J (2010b). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol, 188(1): 242–253
CrossRef
Pubmed
Google scholar
|
[46] |
Li Y H, Zhang C, Gao Z S, Smulders M J M, Ma Z, Liu Z X, Nan H Y, Chang R Z, Qiu L J (2009). Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed, 24(1): 63–76
CrossRef
Google scholar
|
[47] |
Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 228(2): 225–240
CrossRef
Pubmed
Google scholar
|
[48] |
Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley R J, Bilgin D D, Radwan O, Neece D J, Clough S J, May G D, Stacey G (2010a). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol, 152(2): 541–552
CrossRef
Pubmed
Google scholar
|
[49] |
Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G (2010b). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 63(1): 86–99
Pubmed
|
[50] |
Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger R E, Taylor C G, Xu D, Nguyen H T, Stacey G (2009). Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development. Plant Physiol, 151(3): 1207–1220
CrossRef
Pubmed
Google scholar
|
[51] |
Libault M, Zhang X C, Govindarajulu M, Qiu J, Ong Y T, Brechenmacher L, Berg R H, Hurley-Sommer A, Taylor C G, Stacey G (2010c). A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J, 62(5): 852–864
CrossRef
Pubmed
Google scholar
|
[52] |
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J (2007). QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot (Lond), 100(5): 1027–1038
CrossRef
Pubmed
Google scholar
|
[53] |
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010). The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 153(1): 198–210
CrossRef
Pubmed
Google scholar
|
[54] |
Liu J, Ha D, Xie Z, Wang C, Wang H, Zhang W, Zhang J, Chen S (2008a). Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity. J Genet Genomics, 35(7): 441–449
CrossRef
Pubmed
Google scholar
|
[55] |
Liu S J, Wei Z M, Huang J Q (2008b). The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep, 27(3): 489–498
CrossRef
Pubmed
Google scholar
|
[56] |
Luo G Z, Wang H W, Huang J, Tian A G, Wang Y J, Zhang J S, Chen S Y (2005). A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 59(5): 809–820
CrossRef
Pubmed
Google scholar
|
[57] |
Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 50(7): 1260–1276
CrossRef
Pubmed
Google scholar
|
[58] |
Marek L F, Mudge J, Darnielle L, Grant D, Hanson N, Paz M, Huihuang Y, Denny R, Larson K, Foster-Hartnett D, Cooper A, Danesh D, Larsen D, Schmidt T, Staggs R, Crow J A, Retzel E, Young N D, Shoemaker R C (2001). Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome, 44(4): 572–581
CrossRef
Pubmed
Google scholar
|
[59] |
Marek L F, Shoemaker R C (1997). BAC contig development by fingerprint analysis in soybean. Genome, 40(4): 420–427
CrossRef
Pubmed
Google scholar
|
[60] |
Mathieu M, Winters E K, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker R C, Stacey G, Clemente T (2009). Establishment of a soybean (Glycine max Merr. L.) transposon-based mutagenesis repository. Planta, 229(2): 279–289
CrossRef
Pubmed
Google scholar
|
[61] |
Matthews B F, Devine T E, Weisemann J M, Beard H S, Lewers K S, MacDonald M H, Park Y B, Maiti R, Lin J J, Kuo J, Pedroni M J, Cregan P B, Saunders J A (2001). Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci, 41(2): 516–521
CrossRef
Google scholar
|
[62] |
McPherson R M, MacRae T C (2009). Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol, 102(4): 1640–1648
CrossRef
Pubmed
Google scholar
|
[63] |
Meksem K, Ruben E, Zobrist K, Zhang H B, Lightfoot D (2000). Two large insert libraries for soybean: Application in cyst nematode resistance and genome wide physical mapping. Theor Appl Genet, 101: 747–755
CrossRef
Google scholar
|
[64] |
Men A E, Laniya T S, Searle I R, Iturbe-Ormaetxe I, Gresshoff I, Jiang Q, Carroll B J, Gresshoff P M (2002). Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett, 13(3): 147–155
CrossRef
Google scholar
|
[65] |
Moravec T, Schmidt M A, Herman E M, Woodford-Thomas T (2007). Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine, 25(9): 1647–1657
CrossRef
Pubmed
Google scholar
|
[66] |
Moschini G, Lapan H, Sobolevsky A (2000). Roundup Ready soybeans and welfare effects in the soybean complex. Agribusiness, 16(1): 33–55
CrossRef
Google scholar
|
[67] |
Nunes A C, Vianna G R, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech E L, Aragão F J (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta, 224(1): 125–132
CrossRef
Pubmed
Google scholar
|
[68] |
Ohkama N, Goto D B, Fujiwara T, Naito S (2002). Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol, 43(11): 1266–1275
CrossRef
Pubmed
Google scholar
|
[69] |
Olhoft P M, Flagel L E, Donovan C M, Somers D A (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 216(5): 723–735
Pubmed
|
[100] |
PalmerR G, Ortiz-PerezE, Cervantes-Martinez I G, WileyH, Hamlin S J, Healy R A, Horner H T, Davis W H (2003). Hybrid soybean–current status and future outlook. In: Proceedings of the 33rd Soybean Seed Research Conference, Washington, DC: American Seed Trade Association,267–304
|
[70] |
Perez P T, Cianzio S R, Palmer R G (2009). Evaluation of soybean [Glycine max (L.) Merr.] F1 hybrids. J Crop Improv, 23(1): 1–18
CrossRef
Google scholar
|
[71] |
Qiu B X, Sleper D A, Rao-Arelli A P (1997). Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1, 3 and 5 in Peking. Euphytica, 96(2): 225–231
CrossRef
Google scholar
|
[72] |
Raymer P L, Grey T L (2003). Challenges in comparing transgenic and nontransgenic soybean cultivars. Crop Sci, 43(5): 1584–1589
CrossRef
Google scholar
|
[73] |
Rech E L, Vianna G R, Aragão F J (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc, 3(3): 410–418
CrossRef
Pubmed
Google scholar
|
[74] |
Salimath S, Bhattacharyya M K (1999). Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene. Theor Appl Genet, 98(5): 712–720
CrossRef
Google scholar
|
[75] |
Santra D K, Sandhu D, Tai T, Bhattacharyya M K (2003). Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region. Funct Integr Genomics, 3(4): 153–159
CrossRef
Pubmed
Google scholar
|
[76] |
Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci, 176(4): 514–521
CrossRef
Google scholar
|
[77] |
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278): 178–183
CrossRef
Pubmed
Google scholar
|
[78] |
Schupp J M, Dick A B, Zinnamon K N, Keim P (2001). Serial analysis of gene expression applied to soybean. Plant & Animal Genome IX Conference, Town & Country Hotel, San Diego, CA. http://www.intl-pag.org/9/abstracts/P08_14.html.
|
[79] |
Seo J K, Hwang S H, Kang S H, Choi H S, Lee S H, Sohn S H, Kim K H (2007). Interaction study of soybean mosaic virus proteins with soybean proteins using the yeast-two hybrid system. Plant Pathol J, 23(4): 281–286
CrossRef
Google scholar
|
[80] |
Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 25(8): 930–937
CrossRef
Pubmed
Google scholar
|
[81] |
Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton S W, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop E G, Vielweber C J, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002). A compilation of soybean ESTs: generation and analysis. Genome, 45(2): 329–338
CrossRef
Pubmed
Google scholar
|
[82] |
Shoemaker R C, Grant D, Olson T, Warren W C, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton S W, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S (2008). Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 51(4): 294–302
CrossRef
Pubmed
Google scholar
|
[83] |
Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R (1996). Genome duplication in soybean (Glycine subgenus soja). Genetics, 144(1): 329–338
Pubmed
|
[84] |
Shoemaker R C, Schlueter J, Doyle J J (2006). Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol, 9(2): 104–109
CrossRef
Pubmed
Google scholar
|
[85] |
Shultz J L, Kazi S, Bashir R, Afzal J A, Lightfoot D A (2007). The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet, 114(6): 1081–1090
CrossRef
Pubmed
Google scholar
|
[86] |
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet, 109(1): 122–128
CrossRef
Pubmed
Google scholar
|
[87] |
Stacey G, Libault M, Brechenmacher L, Wan J, May G D (2006). Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol, 9(2): 110–121
CrossRef
Pubmed
Google scholar
|
[88] |
Subramanian S, Graham M Y, Yu O, Graham T L (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol, 137(4): 1345–1353
CrossRef
Pubmed
Google scholar
|
[89] |
Sun H, Zhao L M, Huang M (1994). Studies on cytoplasmic-nuclear male sterile soybean. Chin Sci Bull, 39(2): 175
|
[90] |
Tanksley S D, McCouch S R (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329): 1063–1066
CrossRef
Pubmed
Google scholar
|
[91] |
Tian A G, Wang J, Cui P, Han Y J, Xu H, Cong L J, Huang X G, Wang X L, Jiao Y Z, Wang B J, Wang Y J, Zhang J S, Chen S Y (2004). Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet, 108(5): 903–913
CrossRef
Pubmed
Google scholar
|
[92] |
Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J (2010). Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 107(19): 8563–8568
CrossRef
Pubmed
Google scholar
|
[93] |
Tomkins J P, Mahalingam R, Smith H, Goicoechea J L, Knap H T, Wing R A (1999). A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol, 41(1): 25–32
CrossRef
Pubmed
Google scholar
|
[94] |
Wang B J, Wang Y J, Wang Q, Luo G Z, Zhang Z G, He C Y, He S J, Zhang J S, Gai J Y, Chen S Y (2004a). Characterization of an NBS-LRR resistance gene homologue from soybean. J Plant Physiol, 161(7): 815–822
CrossRef
Pubmed
Google scholar
|
[95] |
Wang C M, Wang H W, Zhang J S, Chen S Y (2008). A seed-specific AP2-domain transcription factor from soybean pays a certain role in regulation of seed germination. Sci in China, 51: 336–345 (Series C)
|
[96] |
Wang D, Arelli P R, Shoemaker R C, Diers B W (2001). Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet, 103(4): 561–566
CrossRef
Google scholar
|
[97] |
Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y (2007). The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J, 52(4): 716–729
CrossRef
Pubmed
Google scholar
|
[98] |
Wang Y, Suo H, Zheng Y, Liu K, Zhuang C, Kahle K T, Ma H, Yan X (2010). The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant J, 64(2): 230–242
CrossRef
Pubmed
Google scholar
|
[99] |
Wang Y J, Dongfang Y, Wang X Q, Yang Y L, Yu D Y, Gai J Y, Wu X L, He C Y, Zhang J S, Chen S Y (2004b). Mapping of five genes resistant to SMV strains in soybean. Yi Chuan Xue Bao, 31(1): 87–90
Pubmed
|
[100] |
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 182(4): 1251–1262
CrossRef
Pubmed
Google scholar
|
[101] |
Wei W, Huang J, Hao Y J, Zou H F, Wang H W, Zhao J Y, Liu X Y, Zhang W K, Ma B, Zhang J S, Chen S Y (2009). Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE, 4(9): e7209
CrossRef
Pubmed
Google scholar
|
[102] |
Wong C E, Singh M B, Bhalla P L (2009). Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J, 57(5): 832–845
CrossRef
Pubmed
Google scholar
|
[103] |
Wu C, Sun S, Nimmakayala P, Santos F A, Meksem K, Springman R, Ding K, Lightfoot D A, Zhang H B (2004). A BAC- and BIBAC-based physical map of the soybean genome. Genome Res, 14(2): 319–326
CrossRef
Pubmed
Google scholar
|
[104] |
Wu X, Blake S, Sleper D A, Shannon J G, Cregan P, Nguyen H T (2009). QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 118(6): 1093–1105
CrossRef
Pubmed
Google scholar
|
[105] |
Wu X L, He C Y, Wang Y J, Zhang Z Y, Dongfang Y, Zhang J S, Chen S Y, Gai J Y (2001a). Construction and analysis of a genetic linkage map of soybean. Yi Chuan Xue Bao, 28(11): 1051–1061
Pubmed
|
[106] |
Wu X L, Wang Y J, He C Y, Chen S Y, Gai J Y, Wang X C (2001b). QTLs mapping of some agronomic traits of soybean. Yi Chuan Xue Bao, 28(10): 947–955
Pubmed
|
[107] |
Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, Chen S Y (2009). Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE, 4(9): e6898
CrossRef
Pubmed
Google scholar
|
[108] |
Yang J Y, Gai J Y (2009). Heterosis, combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agron Sin, 35(4): 620–630
CrossRef
Google scholar
|
[109] |
Yang K, Moon J K, Jeong N, Back K, Kim H M, Jeong S C (2008). Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics, 92(1): 52–59
CrossRef
Pubmed
Google scholar
|
[110] |
Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010). A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J, 62(6): 1019–1034
Pubmed
|
[111] |
Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y (2004). QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 108(6): 1131–1139
CrossRef
Pubmed
Google scholar
|
[112] |
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 6(5): 486–503
CrossRef
Pubmed
Google scholar
|
[113] |
Zhu S, Saski C A, Boerma H R, Tomkins J P, All J N, Parrott W A (2009). Construction of a BAC library for a defoliating insect-resistant soybean and identification of candidate clones using a novel approach. Plant Mol Biol Rep, 27(2): 229–235
CrossRef
Google scholar
|
[114] |
Zhu T, Shi I, Funke R P, Gresshoff P M, Keim P (1996). Characterization and application of soybean YACs to molecular cytogenetics. Mol Gen Genet, 252(4): 483–488
CrossRef
Pubmed
Google scholar
|
[115] |
Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B (2003). Single-nucleotide polymorphisms in soybean. Genetics, 163(3): 1123–1134
Pubmed
|
/
〈 | 〉 |