REVIEW

Metabolism is regulated by protein acetylation

  • Wei XU ,
  • Shimin ZHAO
Expand
  • School of Life Sciences, Fudan University, Shanghai 200433, China

Received date: 06 Dec 2010

Accepted date: 25 Feb 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Lysine acetylation, first identified in histones, was initially thought to be a posttranslational modification occuring only in eukaryotic cells that controlled gene transcription either via remodeling chromatin or altering the transcriptional machinery. Recent studies, however, have shown that acetylation is a well-conserved metabolic regulatory mechanism that plays critical roles in regulating and coordinating cell metabolism. Acetylation regulates metabolism through controlling gene transcription, altering the metabolic enzymes activity and possibly other functional aspects, of metabolic enzymes. In this review, we provide an overview of the roles and significance of acetylation in metabolic regulation.

Cite this article

Wei XU , Shimin ZHAO . Metabolism is regulated by protein acetylation[J]. Frontiers in Biology, 2011 , 6(3) : 213 -218 . DOI: 10.1007/s11515-011-1126-6

1
Allfrey V G, Faulkner R, Mirsky A E (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A, 51(5): 786–794

DOI PMID

2
Banks A S, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W, Accili D (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab, 8(4): 333–341

DOI PMID

3
Briere J J, Favier J, Bénit P, El Ghouzzi V, Lorenzato A, Rabier D, Di Renzo M F, Gimenez-Roqueplo A P, Rustin P (2005). Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet, 14(21): 3263–3269

DOI PMID

4
Chang K T, Min K T (2002) Regulation of lifespan by histone deacetylase. Ageing Res Rev, 1(3): 313–326

5
Choudhary C, Kumar C, Gnad F, Nielsen M L, Rehman M, Walther T C, Olsen J V, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942): 834–840

6
Dryden S C, Nahhas F A, Nowak J E, Goustin A S, Tainsky M A (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol, 23(9): 3173–3185

7
Erion D M, Yonemitsu S, Nie Y, Nagai Y, Gillum M P, Hsiao J J, Iwasaki T, Stark R, Weismann D, Yu X X, Murray S F, Bhanot S, Monia B P, Horvath T L, Gao Q, Samuel V T, Shulman G I (2009). SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A, 106(27): 11288–11293

DOI PMID

8
Feige J N, Lagouge M, Canto C, Strehle A, Houten S M, Milne J C, Lambert P D, Mataki C, Elliott P J, Auwerx J (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab, 8(5): 347–358

DOI PMID

9
Frye R A (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798

10
Gerhart-Hines Z, Rodgers J T, Bare O, Lerin C, Kim S H, Mostoslavsky R, Alt F W, Wu Z, Puigserver P (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J, 26(7): 1913–1923

DOI PMID

11
Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389(6649): 349–352

12
Hallows W C, Lee S, Denu J M (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A, 103(27): 10230–10235

DOI PMID

13
Hirschey M D, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard D B, Grueter C A, Harris C, Biddinger S, Ilkayeva O R, Stevens R D, Li Y, Saha A K, Ruderman N B, Bain J R, Newgard C B, Farese R V Jr, Alt F W, Kahn C R, Verdin E (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464(7285): 121–125

DOI PMID

14
Hou X, Xu S, Maitland-Toolan K A, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren T J, Cohen R A, Zang M (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem, 283(29): 20015–20026

DOI PMID

15
Kim S C, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin N V, White M, Yang X J, Zhao Y M (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 23(4): 607–618

16
Li X, Zhang S, Blander G, Tse J G, Krieger M, Guarente L (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28(1): 91–106

DOI PMID

17
Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084

DOI PMID

18
Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers D J, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219): 269–273

PMID

19
Nakagawa T, Lomb D J, Haigis M C, Guarente L (2009). SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 137(3): 560–570

DOI PMID

20
Nie Y, Erion D M, Yuan Z, Dietrich M, Shulman G I, Horvath T L, Gao Q (2009). STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol, 11(4): 492–500

DOI PMID

21
Phillips D M (1963). The presence of acetyl groups of histones. Biochem J, 87: 258–263

PMID

22
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney M W, Guarente L (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993): 771–776

DOI PMID

23
Purushotham A, Schug T T, Xu Q, Surapureddi S, Guo X, Li X (2009). Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab, 9(4): 327–338

DOI PMID

24
Ratcliffe P J (2007). Fumarate hydratase deficiency and cancer: activation of hypoxia signaling? Cancer Cell, 11(4): 303–305

DOI PMID

25
Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22

26
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118

DOI PMID

27
Rodgers J T, Puigserver P (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A, 104(31): 12861–12866

DOI PMID

28
Schwer B, Bunkenborg J, Verdin R O, Andersen J S, Verdin E (2006). Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A, 103(27): 10224–10229

DOI PMID

29
Someya S, Yu W, Hallows W C, Xu J, Vann J M, Leeuwenburgh C, Tanokura M, Denu J M, Prolla T A (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 143(5): 802–812

DOI PMID

30
Starai V J, Celic I, Cole R N, Boeke J D, Escalante-Semerena J C (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science, 298(5602): 2390–2392

31
Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol M J (2010). Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol, 42(10): 1672–1680

DOI PMID

32
Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning Z B, Zeng R, Xiong Y, Guang K L, Zhao S, Zhao G F(2010). Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 327(5968): 1004–1007

33
Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y, Zhao S, Guan K L (2009). Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem, 284(20): 13669–13675

DOI PMID

34
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu C F, Grishin N V, Zhao Y (2009). Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics, 8(2): 215–225

35
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock S M, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan K L (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968): 1000–1004

DOI PMID

36
Zhao Y, Lu J, Sun H, Chen X, Huang W, Tao D, Huang B (2005). Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem Biophys Res Commun, 326(4): 811–816

37
Zheng L, Roeder R G, Luo Y (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114(2): 255–266

DOI PMID

Outlines

/