Metabolism is regulated by protein acetylation
Wei XU, Shimin ZHAO
Metabolism is regulated by protein acetylation
Lysine acetylation, first identified in histones, was initially thought to be a posttranslational modification occuring only in eukaryotic cells that controlled gene transcription either via remodeling chromatin or altering the transcriptional machinery. Recent studies, however, have shown that acetylation is a well-conserved metabolic regulatory mechanism that plays critical roles in regulating and coordinating cell metabolism. Acetylation regulates metabolism through controlling gene transcription, altering the metabolic enzymes activity and possibly other functional aspects, of metabolic enzymes. In this review, we provide an overview of the roles and significance of acetylation in metabolic regulation.
acetylation / metabolism / regulation
[1] |
Allfrey V G, Faulkner R, Mirsky A E (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A, 51(5): 786–794
CrossRef
Pubmed
Google scholar
|
[2] |
Banks A S, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W, Accili D (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab, 8(4): 333–341
CrossRef
Pubmed
Google scholar
|
[3] |
Briere J J, Favier J, Bénit P, El Ghouzzi V, Lorenzato A, Rabier D, Di Renzo M F, Gimenez-Roqueplo A P, Rustin P (2005). Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet, 14(21): 3263–3269
CrossRef
Pubmed
Google scholar
|
[4] |
Chang K T, Min K T (2002) Regulation of lifespan by histone deacetylase. Ageing Res Rev, 1(3): 313–326
|
[5] |
Choudhary C, Kumar C, Gnad F, Nielsen M L, Rehman M, Walther T C, Olsen J V, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942): 834–840
|
[6] |
Dryden S C, Nahhas F A, Nowak J E, Goustin A S, Tainsky M A (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol, 23(9): 3173–3185
|
[7] |
Erion D M, Yonemitsu S, Nie Y, Nagai Y, Gillum M P, Hsiao J J, Iwasaki T, Stark R, Weismann D, Yu X X, Murray S F, Bhanot S, Monia B P, Horvath T L, Gao Q, Samuel V T, Shulman G I (2009). SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A, 106(27): 11288–11293
CrossRef
Pubmed
Google scholar
|
[8] |
Feige J N, Lagouge M, Canto C, Strehle A, Houten S M, Milne J C, Lambert P D, Mataki C, Elliott P J, Auwerx J (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab, 8(5): 347–358
CrossRef
Pubmed
Google scholar
|
[9] |
Frye R A (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
|
[10] |
Gerhart-Hines Z, Rodgers J T, Bare O, Lerin C, Kim S H, Mostoslavsky R, Alt F W, Wu Z, Puigserver P (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J, 26(7): 1913–1923
CrossRef
Pubmed
Google scholar
|
[11] |
Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389(6649): 349–352
|
[12] |
Hallows W C, Lee S, Denu J M (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A, 103(27): 10230–10235
CrossRef
Pubmed
Google scholar
|
[13] |
Hirschey M D, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard D B, Grueter C A, Harris C, Biddinger S, Ilkayeva O R, Stevens R D, Li Y, Saha A K, Ruderman N B, Bain J R, Newgard C B, Farese R V Jr, Alt F W, Kahn C R, Verdin E (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464(7285): 121–125
CrossRef
Pubmed
Google scholar
|
[14] |
Hou X, Xu S, Maitland-Toolan K A, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren T J, Cohen R A, Zang M (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem, 283(29): 20015–20026
CrossRef
Pubmed
Google scholar
|
[15] |
Kim S C, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin N V, White M, Yang X J, Zhao Y M (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 23(4): 607–618
|
[16] |
Li X, Zhang S, Blander G, Tse J G, Krieger M, Guarente L (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28(1): 91–106
CrossRef
Pubmed
Google scholar
|
[17] |
Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084
CrossRef
Pubmed
Google scholar
|
[18] |
Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers D J, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219): 269–273
Pubmed
|
[19] |
Nakagawa T, Lomb D J, Haigis M C, Guarente L (2009). SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 137(3): 560–570
CrossRef
Pubmed
Google scholar
|
[20] |
Nie Y, Erion D M, Yuan Z, Dietrich M, Shulman G I, Horvath T L, Gao Q (2009). STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol, 11(4): 492–500
CrossRef
Pubmed
Google scholar
|
[21] |
Phillips D M (1963). The presence of acetyl groups of histones. Biochem J, 87: 258–263
Pubmed
|
[22] |
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney M W, Guarente L (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993): 771–776
CrossRef
Pubmed
Google scholar
|
[23] |
Purushotham A, Schug T T, Xu Q, Surapureddi S, Guo X, Li X (2009). Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab, 9(4): 327–338
CrossRef
Pubmed
Google scholar
|
[24] |
Ratcliffe P J (2007). Fumarate hydratase deficiency and cancer: activation of hypoxia signaling? Cancer Cell, 11(4): 303–305
CrossRef
Pubmed
Google scholar
|
[25] |
Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22
|
[26] |
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118
CrossRef
Pubmed
Google scholar
|
[27] |
Rodgers J T, Puigserver P (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A, 104(31): 12861–12866
CrossRef
Pubmed
Google scholar
|
[28] |
Schwer B, Bunkenborg J, Verdin R O, Andersen J S, Verdin E (2006). Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A, 103(27): 10224–10229
CrossRef
Pubmed
Google scholar
|
[29] |
Someya S, Yu W, Hallows W C, Xu J, Vann J M, Leeuwenburgh C, Tanokura M, Denu J M, Prolla T A (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 143(5): 802–812
CrossRef
Pubmed
Google scholar
|
[30] |
Starai V J, Celic I, Cole R N, Boeke J D, Escalante-Semerena J C (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science, 298(5602): 2390–2392
|
[31] |
Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol M J (2010). Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol, 42(10): 1672–1680
CrossRef
Pubmed
Google scholar
|
[32] |
Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning Z B, Zeng R, Xiong Y, Guang K L, Zhao S, Zhao G F(2010). Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 327(5968): 1004–1007
|
[33] |
Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y, Zhao S, Guan K L (2009). Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem, 284(20): 13669–13675
CrossRef
Pubmed
Google scholar
|
[34] |
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu C F, Grishin N V, Zhao Y (2009). Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics, 8(2): 215–225
|
[35] |
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock S M, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan K L (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968): 1000–1004
CrossRef
Pubmed
Google scholar
|
[36] |
Zhao Y, Lu J, Sun H, Chen X, Huang W, Tao D, Huang B (2005). Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem Biophys Res Commun, 326(4): 811–816
|
[37] |
Zheng L, Roeder R G, Luo Y (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114(2): 255–266
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |