REVIEW

Kinases and glutathione transferases: selective and sensitive targeting

  • Yasemin G. ISGOR ,
  • Belgin S. ISGOR
Expand
  • Chemistry Group, Faculty of Engineering, Atilim University, Ankara 06836, Turkey

Received date: 12 Nov 2010

Accepted date: 13 Dec 2010

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.

Cite this article

Yasemin G. ISGOR , Belgin S. ISGOR . Kinases and glutathione transferases: selective and sensitive targeting[J]. Frontiers in Biology, 0 , 6(2) : 156 -169 . DOI: 10.1007/s11515-011-1112-z

1
Abe J, Takahashi M, Ishida M, Lee J D, Berk B C (1997). c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem, 272(33): 20389–20394

DOI PMID

2
Adler V, Pincus M R (2004). Effector peptides from glutathione-S-transferase-pi affect the activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 34(1): 35–46

PMID

3
Adler V, Yin Z, Fuchs S Y, Benezra M, Rosario L, Tew K D, Pincus M R, Sardana M, Henderson C J, Wolf C R, Davis R J, Ronai Z (1999a). Regulation of JNK signaling by GSTp. EMBO J, 18(5): 1321–1334

DOI PMID

4
Adler V, Yin Z, Tew K D, Ronai Z (1999b). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18(45): 6104–6111

DOI PMID

5
Allan J M, Wild C P, Rollinson S, Willett E V, Moorman A V, Dovey G J, Roddam P L, Roman E, Cartwright R A, Morgan G J (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA, 98(20): 11592–11597

DOI PMID

6
Alvarez R H, Kantarjian H M, Cortes J E (2006). The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer, 107(8): 1918–1929

DOI PMID

7
Aydın D, Isgor B S, Isgor Y G, Olgen S, (2010). Evaluation of Novel Indole-3-Imine-2-On Derivatives As Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. 3rd International Meeting on Pharmacy and Pharmaceutical Sciences. Istanbul, Turkey: 119

8
Baez S, Segura-Aguilar J, Widersten M, Johansson A S, Mannervik B (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J, 324(Pt 1): 25–28

PMID

9
Ben-Bassat H, Klein B Y (2000). Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr Pharm Des, 6(9): 933–942

DOI PMID

10
Berrier A L, Yamada K M (2007). Cell-matrix adhesion. J Cell Physiol, 213(3): 565–573

DOI PMID

11
Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635

DOI PMID

12
Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem, 275(32): 24798–24806

DOI PMID

13
Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol Biol Cell, 21(10): 1698–1713

DOI PMID

14
Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento E V, Gottesman M, Garbi C, Feliciello A (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem, 283(16): 10919–10929

DOI PMID

15
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol, 161(5): 933–944

DOI PMID

16
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596–601

DOI PMID

17
Cohen S, Fleischmann R (2010). Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol, 22(3): 330–335

DOI PMID

18
Cowan-Jacob S W, Fendrich G, Manley P W, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005). The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure, 13(6): 861–871

DOI PMID

19
Crout C A, Koh L P, Gockerman J P, Moore J O, Decastro C, Long G D, Diehl L, Gasparetto C, Niedzwiecki D, Edwards J, Prosnitz L, Horwitz M, Chute J, Morris A, Davis P, Beaven A, Chao N J, Ali-Osman F, Rizzieri D A (2010). Overcoming drug resistance in mantle cell lymphoma using a combination of dose-dense and intense therapy. Cancer Invest, 28(6): 654–660

DOI PMID

20
Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, Guillouzo A, Loyer P (2002). Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem, 277(20): 17892–17900

DOI PMID

21
Di Pietro G, Magno L A, Rios-Santos F (2010). Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol, 6(2): 153–170

DOI PMID

22
Dincer S, Isgor B S, Isgor Y G, Olgen S (2010). Evaluation of Benzimidazole Derivatives as Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey

23
Eaton D L, Bammler T K (1999). Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci, 49(2): 156–164

DOI PMID

24
Edelman A M, Blumenthal D K, Krebs E G (1987). Protein serine/threonine kinases. Annu Rev Biochem, 56: 567–613

PMID

25
Frame M C (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta, 1602(2): 114–130

PMID

26
Gate L, Majumdar R S, Lunk A, Tew K D (2004). Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem, 279(10): 8608–8616

DOI PMID

27
Giamas G, Man Y L, Hirner H, Bischof J, Kramer K, Khan K, Ahmed S S, Stebbing J, Knippschild U (2010). Kinases as targets in the treatment of solid tumors. Cell Signal, 22(7): 984–1002

DOI PMID

28
Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol, 25(15): 6391–6403

DOI PMID

29
Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt G J (2006). New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallogr D Biol Crystallogr, 62(Pt 2): 197–207

DOI PMID

30
Griffith D, Parker J P, Marmion C J (2010). Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. Anticancer Agents Med Chem, 10(5): 354–370

PMID

31
Gulick A M, Fahl W E (1995). Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme. Proc Natl Acad Sci USA, 92(18): 8140–8144

DOI PMID

32
Ha C H, Bennett A M, Jin Z G (2008). A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem, 283(11): 7261–7270

DOI PMID

33
Hao Q, Rutherford S A, Low B, Tang H (2006). Suppression of the phosphorylation of receptor tyrosine phosphatase-alpha on the Src-independent site tyrosine 789 by reactive oxygen species. Mol Pharmacol, 69(6): 1938–1944

DOI PMID

34
Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F (2007). Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood, 109(4): 1678–1686

DOI PMID

35
Hayes J D, Flanagan J U, Jowsey I R (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol, 45(1): 51–88

DOI PMID

36
Hayes J D, Pulford D J (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 30(6): 445–600

DOI PMID

37
Holm P J, Bhakat P, Jegerschöld C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol, 360(5): 934–945

DOI PMID

38
Hosono N, Kishi S, Iho S, Urasaki Y, Yoshida A, Kurooka H, Yokota Y, Ueda T (2010). Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci, 101(3): 767–773

DOI PMID

39
Hsu C H, Chen C L, Hong R L, Chen K L, Lin J F, Cheng A L (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology, 62(4): 305–312

DOI PMID

40
Hunter T, Cooper J A (1985). Protein-tyrosine kinases. Annu Rev Biochem, 54: 897–930

PMID

41
Huveneers S, Danen E H (2009). Adhesion signaling- crosstalk between integrins, Src and Rho. J Cell Sci, 122(Pt 8): 1059–1069

DOI PMID

42
Igarashi T, Tomihari N, Ohmori S, Ueno K, Kitagawa H, Satoh T (1986). Comparison of glutathione S-transferases in mouse, guinea pig, rabbit and hamster liver cytosol to those in rat liver. Biochem Int, 13(4): 641–648

PMID

43
Ingley E (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta, 1784(1): 56–65

PMID

44
Isgor B S, Coruh N, Iscan M (2010a). Soluble glutathione s-transferases in bovine liver: existence of GST T2. J Biol Sci, 10: 667–675

45
Isgor B S, Isgor Y G, Kurt-Kılıc Z, Olgen S (2010b). The Effect of Novel pp60c-src Inhibitors on Mammalian Glutathione S-Transferase Activity. 240th ACS National Meeting & Exposition on “Chemistry of Preventing and Combatting Disease”, Boston, Massachusetts, USA

46
Jope R S, Zhang L, Song L (2000). Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys, 376(2): 365–370

DOI PMID

47
Kemble D J, Sun G (2009). Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA, 106(13): 5070–5075

DOI PMID

48
Khadaroo R G, He R, Parodo J, Powers K A, Marshall J C, Kapus A, Rotstein O D (2004). The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery, 136(2): 483–488

DOI PMID

49
Kilic Z, Sener F, Isgor Y G, Coban T, Olgen S (2009). Investigating Antioxidant and Src Kinase Inhibitory Effects of Aminomethylindole Derivatives. 1st Turkish-Russian Joint Meeting on Organic and Medicinal Chemistry. Antalya, Turkey: 51

50
Kilic-Kurt Z, Isgor Y G, Isgor B S, Olgen S (2010). The Effect Of Novel Indole Derivatives As Inhibitors Of Src Kinase and Mammalian Glutathione S-Transferase. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey

51
Kim S G, Lee S J (2007). PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci, 96(2): 206–213

DOI PMID

52
Kim S K, Abdelmegeed M A, Novak R F (2006). Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 316(3): 1255–1261

DOI PMID

53
Kim S K, Novak R F (2007). The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther, 113(1): 88–120

DOI PMID

54
Kim S K, Woodcroft K J, Novak R F (2003). Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 305(1): 353–361

DOI PMID

55
Kostyuk V A, Potapovich A I (2009). Mechanisms of the suppression of free radical overproduction by antioxidants. Front Biosci (Elite Ed), 1: 179–188 (Elite Ed)

PMID

56
Kostyuk V A, Potapovich A I, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva I B, Raskovic D, De Luca C, Pastore S, Korkina L G (2010). Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H2O2 and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal, 13(5): 607–620

DOI PMID

57
LaPensee E W, Schwemberger S J, LaPensee C R, Bahassi M, Afton S E, Ben-Jonathan N (2009). Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis, 30(8): 1298–1304

DOI PMID

58
Li J, Xia Z, Ding J (2005). Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Protein Sci, 14(9): 2361–2369

DOI PMID

59
Lindberg R A, Quinn A M, Hunter T (1992). Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci, 17(3): 114–119

DOI PMID

60
Lo H W, Antoun G R, Ali-Osman F (2004). The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res, 64(24): 9131–9138

DOI PMID

61
Lu Y, Yu Q, Liu J H, Zhang J, Wang H, Koul D, McMurray J S, Fang X, Yung W K, Siminovitch K A, Mills G B (2003). Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 278(41): 40057–40066

DOI PMID

62
Manal M E T, Hanachi P, Patimah I, Siddig I A, Fauziah O (2007). The effect of neem (Azadirachta indica) leaves extract on alpha-fetoprotein serum concentration, glutathione s-transferase and glutathione peroxidase activity in hepatocarcinogenesis induced rats. Int J Cancer Res, 3: 111–118

DOI

63
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934

DOI PMID

64
Martin G S (2004). The road to Src. Oncogene, 23(48): 7910–7917

DOI PMID

65
McIlwain C C, Townsend D M, Tew K D (2006). Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene, 25(11): 1639–1648

DOI PMID

66
McLachlan R W, Kraemer A, Helwani F M, Kovacs E M, Yap A S (2007). E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell, 18(8): 3214–3223

DOI PMID

100
McLean G W, Carragher N O, Avizienyte E, Evans J, Brunton V G, Frame M C (2005). The role of focal-adhesion kinase in cancer- a new therapeutic opportunity. Nat Rev Cancer, 5(7): 505–515<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>

67
Nordberg J, Arnér E S (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11): 1287–1312

DOI PMID

68
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F (2005). Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J, 390(Pt 1): 359–366

DOI PMID

69
Oakley A J, Lo Bello M, Mazzetti A P, Federici G, Parker M W (1997). The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett, 419(1): 32–36

DOI PMID

70
Okamura T, Singh S, Buolamwini J, Haystead T, Friedman H, Bigner D, Ali-Osman F (2009a). Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. J Biol Chem, 284(25): 16979–16989

DOI PMID

71
Okamura T, Singh S, Buolamwini J K, Friedman H S, Bigner D D, Ali-Osman F (2009b). EGF receptor tyrosine kinase mediates a novel pathway of drug resistance in malignant gliomas via tyrosine phosphorylation and functional activation of GST P1. Neuro-oncol, 11(2): 218–218

72
Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, Ishida T, Takahara J (2001). Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene, 20(45): 6643–6650

DOI PMID

73
Pani G, Giannoni E, Galeotti T, Chiarugi P (2009). Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal, 11(11): 2791–2806

DOI PMID

74
Patskovsky Y V, Patskovska L N, Listowsky I, Almo S C(2009, Last Update on 24 February, 2009). Human Glutathione S-Transferase M1A–1A Catalyzes Formation of GSH-Metal Complexes. Retrieved 20 June, 2010, from http://www.pdb.org.

75
Planchon S M, Waite K A, Eng C (2008). The nuclear affairs of PTEN. J Cell Sci, 121(Pt 3): 249–253

DOI PMID

76
Playford M P, Schaller M D (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23(48): 7928–7946

DOI PMID

77
Polekhina G, Board P G, Blackburn A C, Parker M W (2001). Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry, 40(6): 1567–1576

DOI PMID

78
Ricono J M, Huang M, Barnes L A, Lau S K, Weis S M, Schlaepfer D D, Hanks S K, Cheresh D A (2009). Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res, 69(4): 1383–1391

DOI PMID

79
Rodriguez P, Mitton B, Kranias E G (2005). Phosphorylation of glutathione-S-transferase by protein kinase C-alpha implications for affinity-tag purification. Biotechnol Lett, 27(23-24): 1869–1873

DOI PMID

80
Rucci N, Susa M, Teti A (2008). Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem, 8(3): 342–349

DOI PMID

81
Schlaepfer D D, Hanks S K, Hunter T, van der Geer P (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372(6508): 786–791

PMID

82
Scodelaro Bilbao P, Boland R, Santillán G (2010). ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys, 494(1): 7–14

DOI PMID

83
Shah O J, Kimball S R, Jefferson L S (2002). The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases. Biochem J, 366(Pt 1): 57–62

PMID

84
Singh S, Okamura T, Ali-Osman F (2010). Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol, 80(9): 1343–1355

DOI PMID

85
Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond B B, Hatler M, Wolf R, Henderson C, Smeyne R J (2007). GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A, 104(6): 1977–1982

DOI PMID

86
Sun G, Kemble D J (2009). To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. Cell Cycle, 8(15): 2353–2355

PMID

87
Tars K, Larsson A K, Shokeer A, Olin B, Mannervik B, Kleywegt G J (2006). Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant. J Mol Biol, 355(1): 96–105

DOI PMID

88
Thomas S M, Brugge J S (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 13(1): 513–609

DOI PMID

89
Tice D A, Biscardi J S, Nickles A L, Parsons S J (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A, 96(4): 1415–1420

DOI PMID

90
Townsend D M, Findlay V J, Fazilev F, Ogle M, Fraser J, Saavedra J E, Ji X, Keefer L K, Tew K D (2006). A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol, 69(2): 501–508

DOI PMID

91
Townsend D M, He L, Hutchens S, Garrett T E, Pazoles C J, Tew K D (2008). NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res, 68(8): 2870–2877

DOI PMID

92
Townsend D M, Shen H, Staros A L, Gaté L, Tew K D (2002). Efficacy of a glutathione S-transferase pi-activated prodrug in platinum-resistant ovarian cancer cells. Mol Cancer Ther, 1(12): 1089–1095

PMID

93
Uys J D, Manevich Y, Devane L C, He L, Garret T E, Pazoles C J, Tew K D, Townsend D M (2010). Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic. Biomed Pharmacother, 64(7): 493–498

DOI PMID

94
Villafania A, Anwar K, Amar S, Chie L, Way D, Chung D L, Adler V, Ronai Z, Brandt-Rauf P W, Yamaizumii Z, Kung H F, Pincus M R (2000). Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 30(1): 57–64

PMID

95
Vosler P S, Chen J (2009). Potential molecular targets for translational stroke research. Stroke, 40(3 Suppl): S119–S120

DOI PMID

96
Waldmann H, Levitzki A (2001). Protein tyrosine kinase inhibitors as therapeutic agents. Bioorganic Chemistry of Biological Signal Transduction, 211: 1–15

97
Waldron R T, Rey O, Zhukova E, Rozengurt E (2004). Oxidative stress induces protein kinase C-mediated activation loop phosphorylation and nuclear redistribution of protein kinase D. J Biol Chem, 279(26): 27482–27493

DOI PMID

98
Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007). Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene, 26(7): 1067–1077

DOI PMID

99
Wallez Y, Vilgrain I, Huber P (2006). Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med, 16(2): 55–59

DOI PMID

Outlines

/