Kinases and glutathione transferases: selective and sensitive targeting

Yasemin G. ISGOR, Belgin S. ISGOR

PDF(697 KB)
PDF(697 KB)
Front. Biol. ›› DOI: 10.1007/s11515-011-1112-z
REVIEW
REVIEW

Kinases and glutathione transferases: selective and sensitive targeting

Author information +
History +

Abstract

Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.

Keywords

glutathione transferase / protein tyrosine kinase / small molecule inhibitors / c-Src / signal transduction / drug targeting

Cite this article

Download citation ▾
Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting. Front Biol, https://doi.org/10.1007/s11515-011-1112-z

References

[1]
Abe J, Takahashi M, Ishida M, Lee J D, Berk B C (1997). c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem, 272(33): 20389–20394
CrossRef Pubmed Google scholar
[2]
Adler V, Pincus M R (2004). Effector peptides from glutathione-S-transferase-pi affect the activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 34(1): 35–46
Pubmed
[3]
Adler V, Yin Z, Fuchs S Y, Benezra M, Rosario L, Tew K D, Pincus M R, Sardana M, Henderson C J, Wolf C R, Davis R J, Ronai Z (1999a). Regulation of JNK signaling by GSTp. EMBO J, 18(5): 1321–1334
CrossRef Pubmed Google scholar
[4]
Adler V, Yin Z, Tew K D, Ronai Z (1999b). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18(45): 6104–6111
CrossRef Pubmed Google scholar
[5]
Allan J M, Wild C P, Rollinson S, Willett E V, Moorman A V, Dovey G J, Roddam P L, Roman E, Cartwright R A, Morgan G J (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA, 98(20): 11592–11597
CrossRef Pubmed Google scholar
[6]
Alvarez R H, Kantarjian H M, Cortes J E (2006). The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer, 107(8): 1918–1929
CrossRef Pubmed Google scholar
[7]
Aydın D, Isgor B S, Isgor Y G, Olgen S, (2010). Evaluation of Novel Indole-3-Imine-2-On Derivatives As Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. 3rd International Meeting on Pharmacy and Pharmaceutical Sciences. Istanbul, Turkey: 119
[8]
Baez S, Segura-Aguilar J, Widersten M, Johansson A S, Mannervik B (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J, 324(Pt 1): 25–28
Pubmed
[9]
Ben-Bassat H, Klein B Y (2000). Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr Pharm Des, 6(9): 933–942
CrossRef Pubmed Google scholar
[10]
Berrier A L, Yamada K M (2007). Cell-matrix adhesion. J Cell Physiol, 213(3): 565–573
CrossRef Pubmed Google scholar
[11]
Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635
CrossRef Pubmed Google scholar
[12]
Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem, 275(32): 24798–24806
CrossRef Pubmed Google scholar
[13]
Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol Biol Cell, 21(10): 1698–1713
CrossRef Pubmed Google scholar
[14]
Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento E V, Gottesman M, Garbi C, Feliciello A (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem, 283(16): 10919–10929
CrossRef Pubmed Google scholar
[15]
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol, 161(5): 933–944
CrossRef Pubmed Google scholar
[16]
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596–601
CrossRef Pubmed Google scholar
[17]
Cohen S, Fleischmann R (2010). Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol, 22(3): 330–335
CrossRef Pubmed Google scholar
[18]
Cowan-Jacob S W, Fendrich G, Manley P W, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005). The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure, 13(6): 861–871
CrossRef Pubmed Google scholar
[19]
Crout C A, Koh L P, Gockerman J P, Moore J O, Decastro C, Long G D, Diehl L, Gasparetto C, Niedzwiecki D, Edwards J, Prosnitz L, Horwitz M, Chute J, Morris A, Davis P, Beaven A, Chao N J, Ali-Osman F, Rizzieri D A (2010). Overcoming drug resistance in mantle cell lymphoma using a combination of dose-dense and intense therapy. Cancer Invest, 28(6): 654–660
CrossRef Pubmed Google scholar
[20]
Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, Guillouzo A, Loyer P (2002). Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem, 277(20): 17892–17900
CrossRef Pubmed Google scholar
[21]
Di Pietro G, Magno L A, Rios-Santos F (2010). Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol, 6(2): 153–170
CrossRef Pubmed Google scholar
[22]
Dincer S, Isgor B S, Isgor Y G, Olgen S (2010). Evaluation of Benzimidazole Derivatives as Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey
[23]
Eaton D L, Bammler T K (1999). Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci, 49(2): 156–164
CrossRef Pubmed Google scholar
[24]
Edelman A M, Blumenthal D K, Krebs E G (1987). Protein serine/threonine kinases. Annu Rev Biochem, 56: 567–613
Pubmed
[25]
Frame M C (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta, 1602(2): 114–130
Pubmed
[26]
Gate L, Majumdar R S, Lunk A, Tew K D (2004). Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem, 279(10): 8608–8616
CrossRef Pubmed Google scholar
[27]
Giamas G, Man Y L, Hirner H, Bischof J, Kramer K, Khan K, Ahmed S S, Stebbing J, Knippschild U (2010). Kinases as targets in the treatment of solid tumors. Cell Signal, 22(7): 984–1002
CrossRef Pubmed Google scholar
[28]
Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol, 25(15): 6391–6403
CrossRef Pubmed Google scholar
[29]
Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt G J (2006). New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallogr D Biol Crystallogr, 62(Pt 2): 197–207
CrossRef Pubmed Google scholar
[30]
Griffith D, Parker J P, Marmion C J (2010). Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. Anticancer Agents Med Chem, 10(5): 354–370
Pubmed
[31]
Gulick A M, Fahl W E (1995). Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme. Proc Natl Acad Sci USA, 92(18): 8140–8144
CrossRef Pubmed Google scholar
[32]
Ha C H, Bennett A M, Jin Z G (2008). A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem, 283(11): 7261–7270
CrossRef Pubmed Google scholar
[33]
Hao Q, Rutherford S A, Low B, Tang H (2006). Suppression of the phosphorylation of receptor tyrosine phosphatase-alpha on the Src-independent site tyrosine 789 by reactive oxygen species. Mol Pharmacol, 69(6): 1938–1944
CrossRef Pubmed Google scholar
[34]
Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F (2007). Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood, 109(4): 1678–1686
CrossRef Pubmed Google scholar
[35]
Hayes J D, Flanagan J U, Jowsey I R (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol, 45(1): 51–88
CrossRef Pubmed Google scholar
[36]
Hayes J D, Pulford D J (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 30(6): 445–600
CrossRef Pubmed Google scholar
[37]
Holm P J, Bhakat P, Jegerschöld C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol, 360(5): 934–945
CrossRef Pubmed Google scholar
[38]
Hosono N, Kishi S, Iho S, Urasaki Y, Yoshida A, Kurooka H, Yokota Y, Ueda T (2010). Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci, 101(3): 767–773
CrossRef Pubmed Google scholar
[39]
Hsu C H, Chen C L, Hong R L, Chen K L, Lin J F, Cheng A L (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology, 62(4): 305–312
CrossRef Pubmed Google scholar
[40]
Hunter T, Cooper J A (1985). Protein-tyrosine kinases. Annu Rev Biochem, 54: 897–930
Pubmed
[41]
Huveneers S, Danen E H (2009). Adhesion signaling- crosstalk between integrins, Src and Rho. J Cell Sci, 122(Pt 8): 1059–1069
CrossRef Pubmed Google scholar
[42]
Igarashi T, Tomihari N, Ohmori S, Ueno K, Kitagawa H, Satoh T (1986). Comparison of glutathione S-transferases in mouse, guinea pig, rabbit and hamster liver cytosol to those in rat liver. Biochem Int, 13(4): 641–648
Pubmed
[43]
Ingley E (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta, 1784(1): 56–65
Pubmed
[44]
Isgor B S, Coruh N, Iscan M (2010a). Soluble glutathione s-transferases in bovine liver: existence of GST T2. J Biol Sci, 10: 667–675
[45]
Isgor B S, Isgor Y G, Kurt-Kılıc Z, Olgen S (2010b). The Effect of Novel pp60c-src Inhibitors on Mammalian Glutathione S-Transferase Activity. 240th ACS National Meeting & Exposition on “Chemistry of Preventing and Combatting Disease”, Boston, Massachusetts, USA
[46]
Jope R S, Zhang L, Song L (2000). Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys, 376(2): 365–370
CrossRef Pubmed Google scholar
[47]
Kemble D J, Sun G (2009). Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA, 106(13): 5070–5075
CrossRef Pubmed Google scholar
[48]
Khadaroo R G, He R, Parodo J, Powers K A, Marshall J C, Kapus A, Rotstein O D (2004). The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery, 136(2): 483–488
CrossRef Pubmed Google scholar
[49]
Kilic Z, Sener F, Isgor Y G, Coban T, Olgen S (2009). Investigating Antioxidant and Src Kinase Inhibitory Effects of Aminomethylindole Derivatives. 1st Turkish-Russian Joint Meeting on Organic and Medicinal Chemistry. Antalya, Turkey: 51
[50]
Kilic-Kurt Z, Isgor Y G, Isgor B S, Olgen S (2010). The Effect Of Novel Indole Derivatives As Inhibitors Of Src Kinase and Mammalian Glutathione S-Transferase. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey
[51]
Kim S G, Lee S J (2007). PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci, 96(2): 206–213
CrossRef Pubmed Google scholar
[52]
Kim S K, Abdelmegeed M A, Novak R F (2006). Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 316(3): 1255–1261
CrossRef Pubmed Google scholar
[53]
Kim S K, Novak R F (2007). The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther, 113(1): 88–120
CrossRef Pubmed Google scholar
[54]
Kim S K, Woodcroft K J, Novak R F (2003). Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther, 305(1): 353–361
CrossRef Pubmed Google scholar
[55]
Kostyuk V A, Potapovich A I (2009). Mechanisms of the suppression of free radical overproduction by antioxidants. Front Biosci (Elite Ed), 1: 179–188 (Elite Ed)
Pubmed
[56]
Kostyuk V A, Potapovich A I, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva I B, Raskovic D, De Luca C, Pastore S, Korkina L G (2010). Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H2O2 and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal, 13(5): 607–620
CrossRef Pubmed Google scholar
[57]
LaPensee E W, Schwemberger S J, LaPensee C R, Bahassi M, Afton S E, Ben-Jonathan N (2009). Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis, 30(8): 1298–1304
CrossRef Pubmed Google scholar
[58]
Li J, Xia Z, Ding J (2005). Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Protein Sci, 14(9): 2361–2369
CrossRef Pubmed Google scholar
[59]
Lindberg R A, Quinn A M, Hunter T (1992). Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci, 17(3): 114–119
CrossRef Pubmed Google scholar
[60]
Lo H W, Antoun G R, Ali-Osman F (2004). The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res, 64(24): 9131–9138
CrossRef Pubmed Google scholar
[61]
Lu Y, Yu Q, Liu J H, Zhang J, Wang H, Koul D, McMurray J S, Fang X, Yung W K, Siminovitch K A, Mills G B (2003). Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 278(41): 40057–40066
CrossRef Pubmed Google scholar
[62]
Manal M E T, Hanachi P, Patimah I, Siddig I A, Fauziah O (2007). The effect of neem (Azadirachta indica) leaves extract on alpha-fetoprotein serum concentration, glutathione s-transferase and glutathione peroxidase activity in hepatocarcinogenesis induced rats. Int J Cancer Res, 3: 111–118
CrossRef Google scholar
[63]
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934
CrossRef Pubmed Google scholar
[64]
Martin G S (2004). The road to Src. Oncogene, 23(48): 7910–7917
CrossRef Pubmed Google scholar
[65]
McIlwain C C, Townsend D M, Tew K D (2006). Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene, 25(11): 1639–1648
CrossRef Pubmed Google scholar
[66]
McLachlan R W, Kraemer A, Helwani F M, Kovacs E M, Yap A S (2007). E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell, 18(8): 3214–3223
CrossRef Pubmed Google scholar
[100]
McLean G W, Carragher N O, Avizienyte E, Evans J, Brunton V G, Frame M C (2005). The role of focal-adhesion kinase in cancer- a new therapeutic opportunity. Nat Rev Cancer, 5(7): 505–515<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>
[67]
Nordberg J, Arnér E S (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11): 1287–1312
CrossRef Pubmed Google scholar
[68]
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F (2005). Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J, 390(Pt 1): 359–366
CrossRef Pubmed Google scholar
[69]
Oakley A J, Lo Bello M, Mazzetti A P, Federici G, Parker M W (1997). The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett, 419(1): 32–36
CrossRef Pubmed Google scholar
[70]
Okamura T, Singh S, Buolamwini J, Haystead T, Friedman H, Bigner D, Ali-Osman F (2009a). Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. J Biol Chem, 284(25): 16979–16989
CrossRef Pubmed Google scholar
[71]
Okamura T, Singh S, Buolamwini J K, Friedman H S, Bigner D D, Ali-Osman F (2009b). EGF receptor tyrosine kinase mediates a novel pathway of drug resistance in malignant gliomas via tyrosine phosphorylation and functional activation of GST P1. Neuro-oncol, 11(2): 218–218
[72]
Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, Ishida T, Takahara J (2001). Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene, 20(45): 6643–6650
CrossRef Pubmed Google scholar
[73]
Pani G, Giannoni E, Galeotti T, Chiarugi P (2009). Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal, 11(11): 2791–2806
CrossRef Pubmed Google scholar
[74]
Patskovsky Y V, Patskovska L N, Listowsky I, Almo S C(2009, Last Update on 24 February, 2009). Human Glutathione S-Transferase M1A–1A Catalyzes Formation of GSH-Metal Complexes. Retrieved 20 June, 2010, from http://www.pdb.org.
[75]
Planchon S M, Waite K A, Eng C (2008). The nuclear affairs of PTEN. J Cell Sci, 121(Pt 3): 249–253
CrossRef Pubmed Google scholar
[76]
Playford M P, Schaller M D (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23(48): 7928–7946
CrossRef Pubmed Google scholar
[77]
Polekhina G, Board P G, Blackburn A C, Parker M W (2001). Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry, 40(6): 1567–1576
CrossRef Pubmed Google scholar
[78]
Ricono J M, Huang M, Barnes L A, Lau S K, Weis S M, Schlaepfer D D, Hanks S K, Cheresh D A (2009). Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res, 69(4): 1383–1391
CrossRef Pubmed Google scholar
[79]
Rodriguez P, Mitton B, Kranias E G (2005). Phosphorylation of glutathione-S-transferase by protein kinase C-alpha implications for affinity-tag purification. Biotechnol Lett, 27(23-24): 1869–1873
CrossRef Pubmed Google scholar
[80]
Rucci N, Susa M, Teti A (2008). Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem, 8(3): 342–349
CrossRef Pubmed Google scholar
[81]
Schlaepfer D D, Hanks S K, Hunter T, van der Geer P (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372(6508): 786–791
Pubmed
[82]
Scodelaro Bilbao P, Boland R, Santillán G (2010). ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys, 494(1): 7–14
CrossRef Pubmed Google scholar
[83]
Shah O J, Kimball S R, Jefferson L S (2002). The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases. Biochem J, 366(Pt 1): 57–62
Pubmed
[84]
Singh S, Okamura T, Ali-Osman F (2010). Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol, 80(9): 1343–1355
CrossRef Pubmed Google scholar
[85]
Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond B B, Hatler M, Wolf R, Henderson C, Smeyne R J (2007). GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A, 104(6): 1977–1982
CrossRef Pubmed Google scholar
[86]
Sun G, Kemble D J (2009). To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. Cell Cycle, 8(15): 2353–2355
Pubmed
[87]
Tars K, Larsson A K, Shokeer A, Olin B, Mannervik B, Kleywegt G J (2006). Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant. J Mol Biol, 355(1): 96–105
CrossRef Pubmed Google scholar
[88]
Thomas S M, Brugge J S (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 13(1): 513–609
CrossRef Pubmed Google scholar
[89]
Tice D A, Biscardi J S, Nickles A L, Parsons S J (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A, 96(4): 1415–1420
CrossRef Pubmed Google scholar
[90]
Townsend D M, Findlay V J, Fazilev F, Ogle M, Fraser J, Saavedra J E, Ji X, Keefer L K, Tew K D (2006). A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol, 69(2): 501–508
CrossRef Pubmed Google scholar
[91]
Townsend D M, He L, Hutchens S, Garrett T E, Pazoles C J, Tew K D (2008). NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res, 68(8): 2870–2877
CrossRef Pubmed Google scholar
[92]
Townsend D M, Shen H, Staros A L, Gaté L, Tew K D (2002). Efficacy of a glutathione S-transferase pi-activated prodrug in platinum-resistant ovarian cancer cells. Mol Cancer Ther, 1(12): 1089–1095
Pubmed
[93]
Uys J D, Manevich Y, Devane L C, He L, Garret T E, Pazoles C J, Tew K D, Townsend D M (2010). Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic. Biomed Pharmacother, 64(7): 493–498
CrossRef Pubmed Google scholar
[94]
Villafania A, Anwar K, Amar S, Chie L, Way D, Chung D L, Adler V, Ronai Z, Brandt-Rauf P W, Yamaizumii Z, Kung H F, Pincus M R (2000). Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci, 30(1): 57–64
Pubmed
[95]
Vosler P S, Chen J (2009). Potential molecular targets for translational stroke research. Stroke, 40(3 Suppl): S119–S120
CrossRef Pubmed Google scholar
[96]
Waldmann H, Levitzki A (2001). Protein tyrosine kinase inhibitors as therapeutic agents. Bioorganic Chemistry of Biological Signal Transduction, 211: 1–15
[97]
Waldron R T, Rey O, Zhukova E, Rozengurt E (2004). Oxidative stress induces protein kinase C-mediated activation loop phosphorylation and nuclear redistribution of protein kinase D. J Biol Chem, 279(26): 27482–27493
CrossRef Pubmed Google scholar
[98]
Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007). Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene, 26(7): 1067–1077
CrossRef Pubmed Google scholar
[99]
Wallez Y, Vilgrain I, Huber P (2006). Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med, 16(2): 55–59
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(697 KB)

Accesses

Citations

Detail

Sections
Recommended

/