The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy
Received date: 30 Nov 2010
Accepted date: 24 Dec 2010
Published date: 01 Apr 2011
Copyright
Loss or gain of chromosomes, a condition known as aneuploidy, is a common feature of tumor cells and has therefore been proposed as the driving force for tumorigenesis. Such chromosomal instability can arise during mitosis as a result of mis-segregation of the duplicated sister chromatids to the two daughter cells. In normal cells, mis-segregation is usually prevented by the spindle assembly checkpoint (SAC), a sophisticated surveillance mechanism that inhibits mitotic exit until all chromosomes have successfully achieved bipolar attachment to spindle microtubules. Complete abrogation of SAC activity is lethal to normal as well as to tumor cells, as a consequence of massive chromosome mis-segregation. Importantly, many human aneuploid tumor cells exhibit a weakened SAC activity that allows them to tolerate gains or losses of a small number of chromosomes; and interfering with this SAC residual activity may constitute a suitable strategy to kill cancer cells. This review focuses on the potential link between SAC and tumorigenesis, and the therapeutic strategy to target the SAC for cancer treatment.
Key words: spindle assembly checkpoint; mitosis; chromosome instability; tumor; cancer therapy
Joana BARBOSA , Ana Vanessa NASCIMENTO , Juliana FARIA , Patrícia SILVA , Hassan BOUSBAA . The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy[J]. Frontiers in Biology, 2011 , 6(2) : 147 -155 . DOI: 10.1007/s11515-011-1122-x
1 |
Aguilera A, Gómez-González B (2008). Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet, 9(3): 204–217
|
2 |
Ando K, Kakeji Y, Kitao H, Iimori M, Zhao Y, Yoshida R, Oki E, Yoshinaga K, Matumoto T, Morita M, Sakaguchi Y, Maehara Y (2010). High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer. Cancer Sci, 101(3): 639–645
|
3 |
Bagasra O, Prilliman K R (2004). RNA interference: the molecular immune system. J Mol Histol, 35(6): 545–553
|
4 |
Bakhoum S F, Genovese G, Compton D A (2009). Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol, 19(22): 1937–1942
|
5 |
Bannon J H, Mc Gee M M (2009). Understanding the role of aneuploidy in tumorigenesis. Biochem Soc Trans, 37(Pt 4): 910–913
|
6 |
Basu J, Bousbaa H, Logarinho E, Li Z, Williams B C, Lopes C, Sunkel C E, Goldberg M L (1999). Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol, 146(1): 13–28
|
7 |
Basu J, Logarinho E, Herrmann S, Bousbaa H, Li Z, Chan G K, Yen T J, Sunkel C E, Goldberg M L (1998). Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma, 107(6-7): 376–385
|
8 |
Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11): 2016–2027
|
9 |
Bolanos-Garcia V M (2009). Assessment of the mitotic spindle assembly checkpoint (SAC) as the target of anticancer therapies. Curr Cancer Drug Targets, 9(2): 131–141
|
10 |
Burum-Auensen E, DeAngelis P M, Schjølberg A R, Røislien J, Mjåland O, Clausen O P (2008). Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers. Cell Prolif, 41(4): 645–659
|
11 |
Cahill D P, da Costa L T, Carson-Walter E B, Kinzler K W, Vogelstein B, Lengauer C (1999). Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics, 58(2): 181–187
|
12 |
Cheeseman I M, Desai A (2008). Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol, 9(1): 33–46
|
13 |
Chi Y H, Jeang K T (2007). Aneuploidy and cancer. J Cell Biochem, 102(3): 531–538
|
14 |
Clarke D J, Giménez-Abián J F (2000). Checkpoints controlling mitosis. Bioessays, 22(4): 351–363
|
15 |
Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang Y M, Xu M, Rao C V (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res, 64(2): 440–445
|
16 |
Dalton W B, Yang V W (2009). Role of prolonged mitotic checkpoint activation in the formation and treatment of cancer. Future Oncol, 5(9): 1363–1370
|
17 |
Dobles M, Liberal V, Scott M L, Benezra R, Sorger P K (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101(6): 635–645
|
18 |
Earnshaw W C, Mackay A M (1994). Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J, 8(12): 947–956
|
19 |
Fung M K, Cheung H W, Wong H L, Yuen H F, Ling M T, Chan K W, Wong Y C, Cheung A L, Wang X (2007). MAD2 expression and its significance in mitotic checkpoint control in testicular germ cell tumour. Biochim Biophys Acta, 1773(6): 821–832
|
20 |
Ganem N J, Godinho S A, Pellman D (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460(7252): 278–282
|
21 |
Gemma A, Hosoya Y, Seike M, Uematsu K, Kurimoto F, Hibino S, Yoshimura A, Shibuya M, Kudoh S, Emi M (2001). Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast cancers. Lung Cancer, 32(3): 289–295
|
22 |
Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer, 29(3): 213–218
|
23 |
Grabsch H I, Askham J M, Morrison E E, Pomjanski N, Lickvers K, Parsons W J, Boecking A, Gabbert H E, Mueller W (2004). Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability. J Pathol, 202(2): 208–214
|
24 |
Green R A, Kaplan K B (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol, 163(5): 949–961
|
25 |
Haruki N, Saito H, Harano T, Nomoto S, Takahashi T, Osada H, Fujii Y, Takahashi T (2001). Molecular analysis of the mitotic checkpoint genes BUB1, BUBR1 and BUB3 in human lung cancers. Cancer Lett, 162(2): 201–205
|
26 |
Hernando E, Orlow I, Liberal V, Nohales G, Benezra R, Cordon-Cardo C (2001). Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer. Int J Cancer, 95(4): 223–227
|
27 |
Howell B J, McEwen B F, Canman J C, Hoffman D B, Farrar E M, Rieder C L, Salmon E D (2001). Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol, 155(7): 1159–1172
|
28 |
Hoyt M A, Totis L, Roberts B T (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3): 507–517
|
29 |
Imai Y, Shiratori Y, Kato N, Inoue T, Omata M (1999). Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res, 90(8): 837–840
|
30 |
Jeganathan K, Malureanu L, Baker D J, Abraham S C, van Deursen J M (2007). Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol, 179(2): 255–267
|
31 |
Ji A M, Su D, Che O, Li W S, Sun L, Zhang Z Y, Yang B, Xu F (2009). Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology, 20(40): 405103
|
32 |
Jordan M A, Wilson L (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer, 4(4): 253–265
|
33 |
Kalitsis P, Fowler K J, Griffiths B, Earle E, Chow C W, Jamsen K, Choo K H (2005). Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer, 44(1): 29–36
|
34 |
Kienitz A, Vogel C, Morales I, Müller R, Bastians H (2005). Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene, 24(26): 4301–4310
|
35 |
Ko Y H, Roh J H, Son Y I, Chung M K, Jang J Y, Byun H, Baek C H, Jeong H S (2010). Expression of mitotic checkpoint proteins BUB1B and MAD2L1 in salivary duct carcinomas. J Oral Pathol Med, 39(4): 349–355
|
36 |
Kops G J (2009). Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans, 37(Pt 5): 971–975
|
37 |
Kops G J, Foltz D R, Cleveland D W (2004). Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA, 101(23): 8699–8704
|
38 |
Kops G J, Weaver B A, Cleveland D W (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 5(10): 773–785
|
39 |
Lin S F, Lin P M, Yang M C, Liu T C, Chang J G, Sue Y C, Chen T P (2002). Expression of hBUB1 in acute myeloid leukemia. Leuk Lymphoma, 43(2): 385–391
|
40 |
Logarinho E, Bousbaa H (2008). Kinetochore-microtubule interactions “in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signalling. Cell Cycle, 7(12): 1763–1768
|
41 |
Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T (2003). Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol, 163(3): 1109–1116
|
42 |
Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty V V, Benezra R (2004). Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA, 101(13): 4459–4464
|
43 |
Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep, 8(1): 39–42
|
44 |
Minhas K M, Singh B, Jiang W W, Sidransky D, Califano J A (2003). Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma. Int J Cancer, 107(1): 46–52
|
45 |
Mondal G, Sengupta S, Panda C K, Gollin S M, Saunders W S, Roychoudhury S (2007). Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis, 28(1): 81–92
|
46 |
Morgan D O (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol, 1(2): E47–E53
|
47 |
Musacchio A, Salmon E D (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8(5): 379–393
|
48 |
Myrie K A, Percy M J, Azim J N, Neeley C K, Petty E M (2000). Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett, 152(2): 193–199
|
49 |
Nasmyth K (2005). How do so few control so many? Cell, 120(6): 739–746
|
50 |
Niikura Y, Dixit A, Scott R, Perkins G, Kitagawa K (2007). BUB1 mediation of caspase-independent mitotic death determines cell fate. J Cell Biol, 178(2): 283–296
|
51 |
Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett, 158(2): 141–150
|
52 |
Olesen S H, Thykjaer T, Ørntoft T F (2001). Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity. Carcinogenesis, 22(5): 813–815
|
53 |
Orr B, Bousbaa H, Sunkel C E (2007). Mad2-independent spindle assembly checkpoint activation and controlled metaphase-anaphase transition in Drosophila S2 cells. Mol Biol Cell, 18(3): 850–863
|
54 |
Ouyang B, Knauf J A, Ain K, Nacev B, Fagin J A (2002). Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clin Endocrinol (Oxf), 56(3): 341–350
|
55 |
Pan C, Yan M, Yao J, Xu J, Long Z, Huang H, Liu Q (2008). Aurora kinase small molecule inhibitor destroys mitotic spindle, suppresses cell growth, and induces apoptosis in oral squamous cancer cells. Oral Oncol, 44(7): 639–645
|
56 |
Percy M J, Myrie K A, Neeley C K, Azim J N, Ethier S P, Petty E M (2000). Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosomes Cancer, 29(4): 356–362
|
57 |
Pinto M, Soares M J, Cerveira N, Henrique R, Ribeiro F R, Oliveira J, Jerónimo C, Teixeira M R (2007). Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Arch, 450(4): 379–385
|
58 |
Pinto M, Vieira J, Ribeiro F R, Soares M J, Henrique R, Oliveira J, Jerónimo C, Teixeira M R (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cell Oncol, 30(5): 389–395
|
59 |
Przewloka M R, Glover D M (2009). The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet, 43(1): 439–465
|
60 |
Reddy S K, Rape M, Margansky W A, Kirschner M W (2007). Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature, 446(7138): 921–925
|
61 |
Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol, 101(4): 297–304
|
62 |
Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert J R, Janssen K P (2007). Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer, 120(1): 207–211
|
63 |
Roberts B T, Farr K A, Hoyt M A (1994). The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol, 14(12): 8282–8291
|
64 |
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y (2002). Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 94(7): 2047–2054
|
65 |
Satchi-Fainaro R, Duncan R (2006) Advances in Polymer Science Polymer Therapeutics I: Springer.
|
66 |
Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res, 91(5): 504–509
|
67 |
Scannevin R H, Wang K, Jow F, Megules J, Kopsco D C, Edris W, Carroll K C, Lü Q, Xu W, Xu Z, Katz A H, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby M R, Chanda P, Rhodes K J (2004). Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron, 41(4): 587–598
|
68 |
Schafer K A (1998). The cell cycle: a review. Vet Pathol, 35(6): 461–478
|
69 |
Schmidt M, Medema R H (2006). Exploiting the compromised spindle assembly checkpoint function of tumor cells: dawn on the horizon? Cell Cycle, 5(2): 159–163
|
70 |
Screpanti E, Santaguida S, Nguyen T, Silvestri R, Gussio R, Musacchio A, Hamel E, De Wulf P (2010). A screen for kinetochore-microtubule interaction inhibitors identifies novel antitubulin compounds. PLoS ONE, 5(7): e11603
|
71 |
Seike M, Gemma A, Hosoya Y, Hosomi Y, Okano T, Kurimoto F, Uematsu K, Takenaka K, Yoshimura A, Shibuya M, Ui-Tei K, Kudoh S (2002). The promoter region of the human BUBR1 gene and its expression analysis in lung cancer. Lung Cancer, 38(3): 229–234
|
72 |
Shi Q, Hu M, Luo M, Liu Q, Jiang F, Zhang Y, Wang S, Yan C, Weng Y (2010) Reduced expression of Mad2 and Bub1 proteins is associated with spontaneous abortions. Mol Hum Reprod,
|
73 |
Shigeishi H, Oue N, Kuniyasu H, Wakikawa A, Yokozaki H, Ishikawa T, Yasui W (2001a). Expression of Bub1 gene correlates with tumor proliferating activity in human gastric carcinomas. Pathobiology, 69(1): 24–29
|
74 |
Shigeishi H, Yokozaki H, Kuniyasu H, Nakagawa H, Ishikawa T, Tahara E, Yasui W (2001b). No mutations of the Bub1 gene in human gastric carcinomas. Oncol Rep, 8(4): 791–794
|
75 |
Silkworth W T, Nardi I K, Scholl L M, Cimini D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE, 4(8): e6564
|
76 |
Stegmeier F, Rape M, Draviam V M, Nalepa G, Sowa M E, Ang X L, McDonald E R 3rd, Li M Z, Hannon G J, Sorger P K, Kirschner M W, Harper J W, Elledge S J (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature, 446(7138): 876–881
|
77 |
Sudakin V, Chan G K, Yen T J (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol, 154(5): 925–936
|
78 |
Suijkerbuijk S J, Kops G J (2008). Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta, 1786(1): 24–31
|
79 |
Sze K M, Ching Y P, Jin D Y, Ng I O (2004). Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells. J Biomed Sci, 11(6): 920–927
|
80 |
Takahashi T, Haruki N, Nomoto S, Masuda A, Saji S, Osada H, Takahashi T (1999). Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene, 18(30): 4295–4300
|
81 |
Tanaka K, Mohri Y, Ohi M, Yokoe T, Koike Y, Morimoto Y, Miki C, Tonouchi H, Kusunoki M (2008). Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol), 20(8): 639–646
|
82 |
Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said J W, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 20(25): 3301–3305
|
83 |
Tyson J J, Novak B (2008). Temporal organization of the cell cycle. Curr Biol, 18(17): R759–R768
|
84 |
Wada N, Yoshida A, Miyagi Y, Yamamoto T, Nakayama H, Suganuma N, Matsuzu K, Masudo K, Hirakawa S, Rino Y, Masuda M, Imada T (2008). Overexpression of the mitotic spindle assembly checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive nature. Anticancer Res, 28(1A): 139–144
|
85 |
Wang L, Yin F, Du Y, Chen B, Liang S, Zhang Y, Du W, Wu K, Ding J, Fan D (2010). Depression of MAD2 inhibits apoptosis and increases proliferation and multidrug resistance in gastric cancer cells by regulating the activation of phosphorylated survivin. Tumour Biol, 31(3): 225–232
|
86 |
Wang Z M, Lin H K, Zhu S R, Liu T F, Zhou Z F, Chen Y T (2000). Synthesis, characterization and cytotoxicity of lanthanum(III) complexes with novel 1,10-phenanthroline-2,9-bis-alpha-amino acid conjugates. Anticancer Drug Des, 15(6): 405–411
|
87 |
Weaver B A, Silk A D, Montagna C, Verdier-Pinard P, Cleveland D W (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1): 25–36
|
88 |
Weitzel D H, Vandré D D (2000). Differential spindle assembly checkpoint response in human lung adenocarcinoma cells. Cell Tissue Res, 300(1): 57–65
|
89 |
Yamaguchi K, Okami K, Hibi K, Wehage S L, Jen J, Sidransky D (1999). Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett, 139(2): 183–187
|
90 |
Yoon D S, Wersto R P, Zhou W, Chrest F J, Garrett E S, Kwon T K, Gabrielson E (2002). Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol, 161(2): 391–397
|
91 |
Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff K L, Oh D C, Hathaway N, Dimova N, Cuny G D, King R W (2010). Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell, 18(4): 382–395
|
/
〈 | 〉 |