REVIEW

The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy

  • Joana BARBOSA ,
  • Ana Vanessa NASCIMENTO ,
  • Juliana FARIA ,
  • Patrícia SILVA ,
  • Hassan BOUSBAA
Expand
  • Centro de Investigação em Ciências da Saúde (CICS), Instituto Superior de Ciências da Saúde- Norte, CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal

Received date: 30 Nov 2010

Accepted date: 24 Dec 2010

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Loss or gain of chromosomes, a condition known as aneuploidy, is a common feature of tumor cells and has therefore been proposed as the driving force for tumorigenesis. Such chromosomal instability can arise during mitosis as a result of mis-segregation of the duplicated sister chromatids to the two daughter cells. In normal cells, mis-segregation is usually prevented by the spindle assembly checkpoint (SAC), a sophisticated surveillance mechanism that inhibits mitotic exit until all chromosomes have successfully achieved bipolar attachment to spindle microtubules. Complete abrogation of SAC activity is lethal to normal as well as to tumor cells, as a consequence of massive chromosome mis-segregation. Importantly, many human aneuploid tumor cells exhibit a weakened SAC activity that allows them to tolerate gains or losses of a small number of chromosomes; and interfering with this SAC residual activity may constitute a suitable strategy to kill cancer cells. This review focuses on the potential link between SAC and tumorigenesis, and the therapeutic strategy to target the SAC for cancer treatment.

Cite this article

Joana BARBOSA , Ana Vanessa NASCIMENTO , Juliana FARIA , Patrícia SILVA , Hassan BOUSBAA . The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy[J]. Frontiers in Biology, 2011 , 6(2) : 147 -155 . DOI: 10.1007/s11515-011-1122-x

Acknowledgments

H.B. was supported by grant #04-GBMC-CICS-09, from CESPU – Cooperativa de Ensino Superior Politécnico e Universitário.
1
Aguilera A, Gómez-González B (2008). Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet, 9(3): 204–217

DOI PMID

2
Ando K, Kakeji Y, Kitao H, Iimori M, Zhao Y, Yoshida R, Oki E, Yoshinaga K, Matumoto T, Morita M, Sakaguchi Y, Maehara Y (2010). High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer. Cancer Sci, 101(3): 639–645

DOI PMID

3
Bagasra O, Prilliman K R (2004). RNA interference: the molecular immune system. J Mol Histol, 35(6): 545–553

DOI PMID

4
Bakhoum S F, Genovese G, Compton D A (2009). Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol, 19(22): 1937–1942

DOI PMID

5
Bannon J H, Mc Gee M M (2009). Understanding the role of aneuploidy in tumorigenesis. Biochem Soc Trans, 37(Pt 4): 910–913

DOI PMID

6
Basu J, Bousbaa H, Logarinho E, Li Z, Williams B C, Lopes C, Sunkel C E, Goldberg M L (1999). Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol, 146(1): 13–28

DOI PMID

7
Basu J, Logarinho E, Herrmann S, Bousbaa H, Li Z, Chan G K, Yen T J, Sunkel C E, Goldberg M L (1998). Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma, 107(6-7): 376–385

DOI PMID

8
Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11): 2016–2027

DOI PMID

9
Bolanos-Garcia V M (2009). Assessment of the mitotic spindle assembly checkpoint (SAC) as the target of anticancer therapies. Curr Cancer Drug Targets, 9(2): 131–141

DOI PMID

10
Burum-Auensen E, DeAngelis P M, Schjølberg A R, Røislien J, Mjåland O, Clausen O P (2008). Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers. Cell Prolif, 41(4): 645–659

DOI PMID

11
Cahill D P, da Costa L T, Carson-Walter E B, Kinzler K W, Vogelstein B, Lengauer C (1999). Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics, 58(2): 181–187

DOI PMID

12
Cheeseman I M, Desai A (2008). Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol, 9(1): 33–46

DOI PMID

13
Chi Y H, Jeang K T (2007). Aneuploidy and cancer. J Cell Biochem, 102(3): 531–538

DOI PMID

14
Clarke D J, Giménez-Abián J F (2000). Checkpoints controlling mitosis. Bioessays, 22(4): 351–363

DOI PMID

15
Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang Y M, Xu M, Rao C V (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res, 64(2): 440–445

DOI PMID

16
Dalton W B, Yang V W (2009). Role of prolonged mitotic checkpoint activation in the formation and treatment of cancer. Future Oncol, 5(9): 1363–1370

DOI PMID

17
Dobles M, Liberal V, Scott M L, Benezra R, Sorger P K (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101(6): 635–645

DOI PMID

18
Earnshaw W C, Mackay A M (1994). Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J, 8(12): 947–956

PMID

19
Fung M K, Cheung H W, Wong H L, Yuen H F, Ling M T, Chan K W, Wong Y C, Cheung A L, Wang X (2007). MAD2 expression and its significance in mitotic checkpoint control in testicular germ cell tumour. Biochim Biophys Acta, 1773(6): 821–832

DOI PMID

20
Ganem N J, Godinho S A, Pellman D (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460(7252): 278–282

DOI PMID

21
Gemma A, Hosoya Y, Seike M, Uematsu K, Kurimoto F, Hibino S, Yoshimura A, Shibuya M, Kudoh S, Emi M (2001). Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast cancers. Lung Cancer, 32(3): 289–295

DOI PMID

22
Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer, 29(3): 213–218

DOI PMID

23
Grabsch H I, Askham J M, Morrison E E, Pomjanski N, Lickvers K, Parsons W J, Boecking A, Gabbert H E, Mueller W (2004). Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability. J Pathol, 202(2): 208–214

DOI PMID

24
Green R A, Kaplan K B (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol, 163(5): 949–961

DOI PMID

25
Haruki N, Saito H, Harano T, Nomoto S, Takahashi T, Osada H, Fujii Y, Takahashi T (2001). Molecular analysis of the mitotic checkpoint genes BUB1, BUBR1 and BUB3 in human lung cancers. Cancer Lett, 162(2): 201–205

DOI PMID

26
Hernando E, Orlow I, Liberal V, Nohales G, Benezra R, Cordon-Cardo C (2001). Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer. Int J Cancer, 95(4): 223–227

DOI PMID

27
Howell B J, McEwen B F, Canman J C, Hoffman D B, Farrar E M, Rieder C L, Salmon E D (2001). Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol, 155(7): 1159–1172

DOI PMID

28
Hoyt M A, Totis L, Roberts B T (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3): 507–517

DOI PMID

29
Imai Y, Shiratori Y, Kato N, Inoue T, Omata M (1999). Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res, 90(8): 837–840

PMID

30
Jeganathan K, Malureanu L, Baker D J, Abraham S C, van Deursen J M (2007). Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol, 179(2): 255–267

DOI PMID

31
Ji A M, Su D, Che O, Li W S, Sun L, Zhang Z Y, Yang B, Xu F (2009). Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology, 20(40): 405103

DOI PMID

32
Jordan M A, Wilson L (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer, 4(4): 253–265

DOI PMID

33
Kalitsis P, Fowler K J, Griffiths B, Earle E, Chow C W, Jamsen K, Choo K H (2005). Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer, 44(1): 29–36

DOI PMID

34
Kienitz A, Vogel C, Morales I, Müller R, Bastians H (2005). Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene, 24(26): 4301–4310

DOI PMID

35
Ko Y H, Roh J H, Son Y I, Chung M K, Jang J Y, Byun H, Baek C H, Jeong H S (2010). Expression of mitotic checkpoint proteins BUB1B and MAD2L1 in salivary duct carcinomas. J Oral Pathol Med, 39(4): 349–355

DOI PMID

36
Kops G J (2009). Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans, 37(Pt 5): 971–975

DOI PMID

37
Kops G J, Foltz D R, Cleveland D W (2004). Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA, 101(23): 8699–8704

DOI PMID

38
Kops G J, Weaver B A, Cleveland D W (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 5(10): 773–785

DOI PMID

39
Lin S F, Lin P M, Yang M C, Liu T C, Chang J G, Sue Y C, Chen T P (2002). Expression of hBUB1 in acute myeloid leukemia. Leuk Lymphoma, 43(2): 385–391

DOI PMID

40
Logarinho E, Bousbaa H (2008). Kinetochore-microtubule interactions “in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signalling. Cell Cycle, 7(12): 1763–1768

DOI PMID

41
Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T (2003). Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol, 163(3): 1109–1116

PMID

42
Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty V V, Benezra R (2004). Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA, 101(13): 4459–4464

DOI PMID

43
Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep, 8(1): 39–42

PMID

44
Minhas K M, Singh B, Jiang W W, Sidransky D, Califano J A (2003). Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma. Int J Cancer, 107(1): 46–52

DOI PMID

45
Mondal G, Sengupta S, Panda C K, Gollin S M, Saunders W S, Roychoudhury S (2007). Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis, 28(1): 81–92

DOI PMID

46
Morgan D O (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol, 1(2): E47–E53

DOI PMID

47
Musacchio A, Salmon E D (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8(5): 379–393

DOI PMID

48
Myrie K A, Percy M J, Azim J N, Neeley C K, Petty E M (2000). Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett, 152(2): 193–199

DOI PMID

49
Nasmyth K (2005). How do so few control so many? Cell, 120(6): 739–746

DOI PMID

50
Niikura Y, Dixit A, Scott R, Perkins G, Kitagawa K (2007). BUB1 mediation of caspase-independent mitotic death determines cell fate. J Cell Biol, 178(2): 283–296

DOI PMID

51
Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett, 158(2): 141–150

DOI PMID

52
Olesen S H, Thykjaer T, Ørntoft T F (2001). Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity. Carcinogenesis, 22(5): 813–815

DOI PMID

53
Orr B, Bousbaa H, Sunkel C E (2007). Mad2-independent spindle assembly checkpoint activation and controlled metaphase-anaphase transition in Drosophila S2 cells. Mol Biol Cell, 18(3): 850–863

DOI PMID

54
Ouyang B, Knauf J A, Ain K, Nacev B, Fagin J A (2002). Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clin Endocrinol (Oxf), 56(3): 341–350

DOI PMID

55
Pan C, Yan M, Yao J, Xu J, Long Z, Huang H, Liu Q (2008). Aurora kinase small molecule inhibitor destroys mitotic spindle, suppresses cell growth, and induces apoptosis in oral squamous cancer cells. Oral Oncol, 44(7): 639–645

DOI PMID

56
Percy M J, Myrie K A, Neeley C K, Azim J N, Ethier S P, Petty E M (2000). Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosomes Cancer, 29(4): 356–362

DOI PMID

57
Pinto M, Soares M J, Cerveira N, Henrique R, Ribeiro F R, Oliveira J, Jerónimo C, Teixeira M R (2007). Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Arch, 450(4): 379–385

DOI PMID

58
Pinto M, Vieira J, Ribeiro F R, Soares M J, Henrique R, Oliveira J, Jerónimo C, Teixeira M R (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cell Oncol, 30(5): 389–395

PMID

59
Przewloka M R, Glover D M (2009). The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet, 43(1): 439–465

DOI PMID

60
Reddy S K, Rape M, Margansky W A, Kirschner M W (2007). Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature, 446(7138): 921–925

DOI PMID

61
Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol, 101(4): 297–304

PMID

62
Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert J R, Janssen K P (2007). Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer, 120(1): 207–211

DOI PMID

63
Roberts B T, Farr K A, Hoyt M A (1994). The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol, 14(12): 8282–8291

PMID

64
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y (2002). Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 94(7): 2047–2054

DOI PMID

65
Satchi-Fainaro R, Duncan R (2006) Advances in Polymer Science Polymer Therapeutics I: Springer.

66
Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res, 91(5): 504–509

PMID

67
Scannevin R H, Wang K, Jow F, Megules J, Kopsco D C, Edris W, Carroll K C, Lü Q, Xu W, Xu Z, Katz A H, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby M R, Chanda P, Rhodes K J (2004). Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron, 41(4): 587–598

DOI PMID

68
Schafer K A (1998). The cell cycle: a review. Vet Pathol, 35(6): 461–478

DOI PMID

69
Schmidt M, Medema R H (2006). Exploiting the compromised spindle assembly checkpoint function of tumor cells: dawn on the horizon? Cell Cycle, 5(2): 159–163

DOI PMID

70
Screpanti E, Santaguida S, Nguyen T, Silvestri R, Gussio R, Musacchio A, Hamel E, De Wulf P (2010). A screen for kinetochore-microtubule interaction inhibitors identifies novel antitubulin compounds. PLoS ONE, 5(7): e11603

DOI PMID

71
Seike M, Gemma A, Hosoya Y, Hosomi Y, Okano T, Kurimoto F, Uematsu K, Takenaka K, Yoshimura A, Shibuya M, Ui-Tei K, Kudoh S (2002). The promoter region of the human BUBR1 gene and its expression analysis in lung cancer. Lung Cancer, 38(3): 229–234

DOI PMID

72
Shi Q, Hu M, Luo M, Liu Q, Jiang F, Zhang Y, Wang S, Yan C, Weng Y (2010) Reduced expression of Mad2 and Bub1 proteins is associated with spontaneous abortions. Mol Hum Reprod,

DOI

73
Shigeishi H, Oue N, Kuniyasu H, Wakikawa A, Yokozaki H, Ishikawa T, Yasui W (2001a). Expression of Bub1 gene correlates with tumor proliferating activity in human gastric carcinomas. Pathobiology, 69(1): 24–29

DOI PMID

74
Shigeishi H, Yokozaki H, Kuniyasu H, Nakagawa H, Ishikawa T, Tahara E, Yasui W (2001b). No mutations of the Bub1 gene in human gastric carcinomas. Oncol Rep, 8(4): 791–794

PMID

75
Silkworth W T, Nardi I K, Scholl L M, Cimini D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE, 4(8): e6564

DOI PMID

76
Stegmeier F, Rape M, Draviam V M, Nalepa G, Sowa M E, Ang X L, McDonald E R 3rd, Li M Z, Hannon G J, Sorger P K, Kirschner M W, Harper J W, Elledge S J (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature, 446(7138): 876–881

DOI PMID

77
Sudakin V, Chan G K, Yen T J (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol, 154(5): 925–936

DOI PMID

78
Suijkerbuijk S J, Kops G J (2008). Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta, 1786(1): 24–31

PMID

79
Sze K M, Ching Y P, Jin D Y, Ng I O (2004). Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells. J Biomed Sci, 11(6): 920–927

DOI PMID

80
Takahashi T, Haruki N, Nomoto S, Masuda A, Saji S, Osada H, Takahashi T (1999). Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene, 18(30): 4295–4300

DOI PMID

81
Tanaka K, Mohri Y, Ohi M, Yokoe T, Koike Y, Morimoto Y, Miki C, Tonouchi H, Kusunoki M (2008). Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol), 20(8): 639–646

DOI PMID

82
Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said J W, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 20(25): 3301–3305

DOI PMID

83
Tyson J J, Novak B (2008). Temporal organization of the cell cycle. Curr Biol, 18(17): R759–R768

DOI PMID

84
Wada N, Yoshida A, Miyagi Y, Yamamoto T, Nakayama H, Suganuma N, Matsuzu K, Masudo K, Hirakawa S, Rino Y, Masuda M, Imada T (2008). Overexpression of the mitotic spindle assembly checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive nature. Anticancer Res, 28(1A): 139–144

PMID

85
Wang L, Yin F, Du Y, Chen B, Liang S, Zhang Y, Du W, Wu K, Ding J, Fan D (2010). Depression of MAD2 inhibits apoptosis and increases proliferation and multidrug resistance in gastric cancer cells by regulating the activation of phosphorylated survivin. Tumour Biol, 31(3): 225–232

DOI PMID

86
Wang Z M, Lin H K, Zhu S R, Liu T F, Zhou Z F, Chen Y T (2000). Synthesis, characterization and cytotoxicity of lanthanum(III) complexes with novel 1,10-phenanthroline-2,9-bis-alpha-amino acid conjugates. Anticancer Drug Des, 15(6): 405–411

PMID

87
Weaver B A, Silk A D, Montagna C, Verdier-Pinard P, Cleveland D W (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1): 25–36

DOI PMID

88
Weitzel D H, Vandré D D (2000). Differential spindle assembly checkpoint response in human lung adenocarcinoma cells. Cell Tissue Res, 300(1): 57–65

DOI PMID

89
Yamaguchi K, Okami K, Hibi K, Wehage S L, Jen J, Sidransky D (1999). Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett, 139(2): 183–187

DOI PMID

90
Yoon D S, Wersto R P, Zhou W, Chrest F J, Garrett E S, Kwon T K, Gabrielson E (2002). Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol, 161(2): 391–397

PMID

91
Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff K L, Oh D C, Hathaway N, Dimova N, Cuny G D, King R W (2010). Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell, 18(4): 382–395

DOI PMID

Outlines

/