The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy

Joana BARBOSA, Ana Vanessa NASCIMENTO, Juliana FARIA, Patrícia SILVA, Hassan BOUSBAA

PDF(320 KB)
PDF(320 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 147-155. DOI: 10.1007/s11515-011-1122-x
REVIEW

The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy

Author information +
History +

Abstract

Loss or gain of chromosomes, a condition known as aneuploidy, is a common feature of tumor cells and has therefore been proposed as the driving force for tumorigenesis. Such chromosomal instability can arise during mitosis as a result of mis-segregation of the duplicated sister chromatids to the two daughter cells. In normal cells, mis-segregation is usually prevented by the spindle assembly checkpoint (SAC), a sophisticated surveillance mechanism that inhibits mitotic exit until all chromosomes have successfully achieved bipolar attachment to spindle microtubules. Complete abrogation of SAC activity is lethal to normal as well as to tumor cells, as a consequence of massive chromosome mis-segregation. Importantly, many human aneuploid tumor cells exhibit a weakened SAC activity that allows them to tolerate gains or losses of a small number of chromosomes; and interfering with this SAC residual activity may constitute a suitable strategy to kill cancer cells. This review focuses on the potential link between SAC and tumorigenesis, and the therapeutic strategy to target the SAC for cancer treatment.

Keywords

spindle assembly checkpoint / mitosis / chromosome instability / tumor / cancer therapy

Cite this article

Download citation ▾
Joana BARBOSA, Ana Vanessa NASCIMENTO, Juliana FARIA, Patrícia SILVA, Hassan BOUSBAA. The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy. Front Biol, 2011, 6(2): 147‒155 https://doi.org/10.1007/s11515-011-1122-x

References

[1]
Aguilera A, Gómez-González B (2008). Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet, 9(3): 204–217
CrossRef Pubmed Google scholar
[2]
Ando K, Kakeji Y, Kitao H, Iimori M, Zhao Y, Yoshida R, Oki E, Yoshinaga K, Matumoto T, Morita M, Sakaguchi Y, Maehara Y (2010). High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer. Cancer Sci, 101(3): 639–645
CrossRef Pubmed Google scholar
[3]
Bagasra O, Prilliman K R (2004). RNA interference: the molecular immune system. J Mol Histol, 35(6): 545–553
CrossRef Pubmed Google scholar
[4]
Bakhoum S F, Genovese G, Compton D A (2009). Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol, 19(22): 1937–1942
CrossRef Pubmed Google scholar
[5]
Bannon J H, Mc Gee M M (2009). Understanding the role of aneuploidy in tumorigenesis. Biochem Soc Trans, 37(Pt 4): 910–913
CrossRef Pubmed Google scholar
[6]
Basu J, Bousbaa H, Logarinho E, Li Z, Williams B C, Lopes C, Sunkel C E, Goldberg M L (1999). Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol, 146(1): 13–28
CrossRef Pubmed Google scholar
[7]
Basu J, Logarinho E, Herrmann S, Bousbaa H, Li Z, Chan G K, Yen T J, Sunkel C E, Goldberg M L (1998). Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma, 107(6-7): 376–385
CrossRef Pubmed Google scholar
[8]
Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11): 2016–2027
CrossRef Pubmed Google scholar
[9]
Bolanos-Garcia V M (2009). Assessment of the mitotic spindle assembly checkpoint (SAC) as the target of anticancer therapies. Curr Cancer Drug Targets, 9(2): 131–141
CrossRef Pubmed Google scholar
[10]
Burum-Auensen E, DeAngelis P M, Schjølberg A R, Røislien J, Mjåland O, Clausen O P (2008). Reduced level of the spindle checkpoint protein BUB1B is associated with aneuploidy in colorectal cancers. Cell Prolif, 41(4): 645–659
CrossRef Pubmed Google scholar
[11]
Cahill D P, da Costa L T, Carson-Walter E B, Kinzler K W, Vogelstein B, Lengauer C (1999). Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics, 58(2): 181–187
CrossRef Pubmed Google scholar
[12]
Cheeseman I M, Desai A (2008). Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol, 9(1): 33–46
CrossRef Pubmed Google scholar
[13]
Chi Y H, Jeang K T (2007). Aneuploidy and cancer. J Cell Biochem, 102(3): 531–538
CrossRef Pubmed Google scholar
[14]
Clarke D J, Giménez-Abián J F (2000). Checkpoints controlling mitosis. Bioessays, 22(4): 351–363
CrossRef Pubmed Google scholar
[15]
Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang Y M, Xu M, Rao C V (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res, 64(2): 440–445
CrossRef Pubmed Google scholar
[16]
Dalton W B, Yang V W (2009). Role of prolonged mitotic checkpoint activation in the formation and treatment of cancer. Future Oncol, 5(9): 1363–1370
CrossRef Pubmed Google scholar
[17]
Dobles M, Liberal V, Scott M L, Benezra R, Sorger P K (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101(6): 635–645
CrossRef Pubmed Google scholar
[18]
Earnshaw W C, Mackay A M (1994). Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J, 8(12): 947–956
Pubmed
[19]
Fung M K, Cheung H W, Wong H L, Yuen H F, Ling M T, Chan K W, Wong Y C, Cheung A L, Wang X (2007). MAD2 expression and its significance in mitotic checkpoint control in testicular germ cell tumour. Biochim Biophys Acta, 1773(6): 821–832
CrossRef Pubmed Google scholar
[20]
Ganem N J, Godinho S A, Pellman D (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460(7252): 278–282
CrossRef Pubmed Google scholar
[21]
Gemma A, Hosoya Y, Seike M, Uematsu K, Kurimoto F, Hibino S, Yoshimura A, Shibuya M, Kudoh S, Emi M (2001). Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast cancers. Lung Cancer, 32(3): 289–295
CrossRef Pubmed Google scholar
[22]
Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer, 29(3): 213–218
CrossRef Pubmed Google scholar
[23]
Grabsch H I, Askham J M, Morrison E E, Pomjanski N, Lickvers K, Parsons W J, Boecking A, Gabbert H E, Mueller W (2004). Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability. J Pathol, 202(2): 208–214
CrossRef Pubmed Google scholar
[24]
Green R A, Kaplan K B (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol, 163(5): 949–961
CrossRef Pubmed Google scholar
[25]
Haruki N, Saito H, Harano T, Nomoto S, Takahashi T, Osada H, Fujii Y, Takahashi T (2001). Molecular analysis of the mitotic checkpoint genes BUB1, BUBR1 and BUB3 in human lung cancers. Cancer Lett, 162(2): 201–205
CrossRef Pubmed Google scholar
[26]
Hernando E, Orlow I, Liberal V, Nohales G, Benezra R, Cordon-Cardo C (2001). Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer. Int J Cancer, 95(4): 223–227
CrossRef Pubmed Google scholar
[27]
Howell B J, McEwen B F, Canman J C, Hoffman D B, Farrar E M, Rieder C L, Salmon E D (2001). Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol, 155(7): 1159–1172
CrossRef Pubmed Google scholar
[28]
Hoyt M A, Totis L, Roberts B T (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3): 507–517
CrossRef Pubmed Google scholar
[29]
Imai Y, Shiratori Y, Kato N, Inoue T, Omata M (1999). Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res, 90(8): 837–840
Pubmed
[30]
Jeganathan K, Malureanu L, Baker D J, Abraham S C, van Deursen J M (2007). Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol, 179(2): 255–267
CrossRef Pubmed Google scholar
[31]
Ji A M, Su D, Che O, Li W S, Sun L, Zhang Z Y, Yang B, Xu F (2009). Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology, 20(40): 405103
CrossRef Pubmed Google scholar
[32]
Jordan M A, Wilson L (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer, 4(4): 253–265
CrossRef Pubmed Google scholar
[33]
Kalitsis P, Fowler K J, Griffiths B, Earle E, Chow C W, Jamsen K, Choo K H (2005). Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer, 44(1): 29–36
CrossRef Pubmed Google scholar
[34]
Kienitz A, Vogel C, Morales I, Müller R, Bastians H (2005). Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene, 24(26): 4301–4310
CrossRef Pubmed Google scholar
[35]
Ko Y H, Roh J H, Son Y I, Chung M K, Jang J Y, Byun H, Baek C H, Jeong H S (2010). Expression of mitotic checkpoint proteins BUB1B and MAD2L1 in salivary duct carcinomas. J Oral Pathol Med, 39(4): 349–355
CrossRef Pubmed Google scholar
[36]
Kops G J (2009). Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans, 37(Pt 5): 971–975
CrossRef Pubmed Google scholar
[37]
Kops G J, Foltz D R, Cleveland D W (2004). Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA, 101(23): 8699–8704
CrossRef Pubmed Google scholar
[38]
Kops G J, Weaver B A, Cleveland D W (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 5(10): 773–785
CrossRef Pubmed Google scholar
[39]
Lin S F, Lin P M, Yang M C, Liu T C, Chang J G, Sue Y C, Chen T P (2002). Expression of hBUB1 in acute myeloid leukemia. Leuk Lymphoma, 43(2): 385–391
CrossRef Pubmed Google scholar
[40]
Logarinho E, Bousbaa H (2008). Kinetochore-microtubule interactions “in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signalling. Cell Cycle, 7(12): 1763–1768
CrossRef Pubmed Google scholar
[41]
Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T (2003). Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol, 163(3): 1109–1116
Pubmed
[42]
Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty V V, Benezra R (2004). Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA, 101(13): 4459–4464
CrossRef Pubmed Google scholar
[43]
Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep, 8(1): 39–42
Pubmed
[44]
Minhas K M, Singh B, Jiang W W, Sidransky D, Califano J A (2003). Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma. Int J Cancer, 107(1): 46–52
CrossRef Pubmed Google scholar
[45]
Mondal G, Sengupta S, Panda C K, Gollin S M, Saunders W S, Roychoudhury S (2007). Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis, 28(1): 81–92
CrossRef Pubmed Google scholar
[46]
Morgan D O (1999). Regulation of the APC and the exit from mitosis. Nat Cell Biol, 1(2): E47–E53
CrossRef Pubmed Google scholar
[47]
Musacchio A, Salmon E D (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8(5): 379–393
CrossRef Pubmed Google scholar
[48]
Myrie K A, Percy M J, Azim J N, Neeley C K, Petty E M (2000). Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett, 152(2): 193–199
CrossRef Pubmed Google scholar
[49]
Nasmyth K (2005). How do so few control so many? Cell, 120(6): 739–746
CrossRef Pubmed Google scholar
[50]
Niikura Y, Dixit A, Scott R, Perkins G, Kitagawa K (2007). BUB1 mediation of caspase-independent mitotic death determines cell fate. J Cell Biol, 178(2): 283–296
CrossRef Pubmed Google scholar
[51]
Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett, 158(2): 141–150
CrossRef Pubmed Google scholar
[52]
Olesen S H, Thykjaer T, Ørntoft T F (2001). Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity. Carcinogenesis, 22(5): 813–815
CrossRef Pubmed Google scholar
[53]
Orr B, Bousbaa H, Sunkel C E (2007). Mad2-independent spindle assembly checkpoint activation and controlled metaphase-anaphase transition in Drosophila S2 cells. Mol Biol Cell, 18(3): 850–863
CrossRef Pubmed Google scholar
[54]
Ouyang B, Knauf J A, Ain K, Nacev B, Fagin J A (2002). Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clin Endocrinol (Oxf), 56(3): 341–350
CrossRef Pubmed Google scholar
[55]
Pan C, Yan M, Yao J, Xu J, Long Z, Huang H, Liu Q (2008). Aurora kinase small molecule inhibitor destroys mitotic spindle, suppresses cell growth, and induces apoptosis in oral squamous cancer cells. Oral Oncol, 44(7): 639–645
CrossRef Pubmed Google scholar
[56]
Percy M J, Myrie K A, Neeley C K, Azim J N, Ethier S P, Petty E M (2000). Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosomes Cancer, 29(4): 356–362
CrossRef Pubmed Google scholar
[57]
Pinto M, Soares M J, Cerveira N, Henrique R, Ribeiro F R, Oliveira J, Jerónimo C, Teixeira M R (2007). Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Arch, 450(4): 379–385
CrossRef Pubmed Google scholar
[58]
Pinto M, Vieira J, Ribeiro F R, Soares M J, Henrique R, Oliveira J, Jerónimo C, Teixeira M R (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cell Oncol, 30(5): 389–395
Pubmed
[59]
Przewloka M R, Glover D M (2009). The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet, 43(1): 439–465
CrossRef Pubmed Google scholar
[60]
Reddy S K, Rape M, Margansky W A, Kirschner M W (2007). Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature, 446(7138): 921–925
CrossRef Pubmed Google scholar
[61]
Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol, 101(4): 297–304
Pubmed
[62]
Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert J R, Janssen K P (2007). Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer, 120(1): 207–211
CrossRef Pubmed Google scholar
[63]
Roberts B T, Farr K A, Hoyt M A (1994). The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol, 14(12): 8282–8291
Pubmed
[64]
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y (2002). Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 94(7): 2047–2054
CrossRef Pubmed Google scholar
[65]
Satchi-Fainaro R, Duncan R (2006) Advances in Polymer Science Polymer Therapeutics I: Springer.
[66]
Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res, 91(5): 504–509
Pubmed
[67]
Scannevin R H, Wang K, Jow F, Megules J, Kopsco D C, Edris W, Carroll K C, Lü Q, Xu W, Xu Z, Katz A H, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby M R, Chanda P, Rhodes K J (2004). Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron, 41(4): 587–598
CrossRef Pubmed Google scholar
[68]
Schafer K A (1998). The cell cycle: a review. Vet Pathol, 35(6): 461–478
CrossRef Pubmed Google scholar
[69]
Schmidt M, Medema R H (2006). Exploiting the compromised spindle assembly checkpoint function of tumor cells: dawn on the horizon? Cell Cycle, 5(2): 159–163
CrossRef Pubmed Google scholar
[70]
Screpanti E, Santaguida S, Nguyen T, Silvestri R, Gussio R, Musacchio A, Hamel E, De Wulf P (2010). A screen for kinetochore-microtubule interaction inhibitors identifies novel antitubulin compounds. PLoS ONE, 5(7): e11603
CrossRef Pubmed Google scholar
[71]
Seike M, Gemma A, Hosoya Y, Hosomi Y, Okano T, Kurimoto F, Uematsu K, Takenaka K, Yoshimura A, Shibuya M, Ui-Tei K, Kudoh S (2002). The promoter region of the human BUBR1 gene and its expression analysis in lung cancer. Lung Cancer, 38(3): 229–234
CrossRef Pubmed Google scholar
[72]
Shi Q, Hu M, Luo M, Liu Q, Jiang F, Zhang Y, Wang S, Yan C, Weng Y (2010) Reduced expression of Mad2 and Bub1 proteins is associated with spontaneous abortions. Mol Hum Reprod,
CrossRef Google scholar
[73]
Shigeishi H, Oue N, Kuniyasu H, Wakikawa A, Yokozaki H, Ishikawa T, Yasui W (2001a). Expression of Bub1 gene correlates with tumor proliferating activity in human gastric carcinomas. Pathobiology, 69(1): 24–29
CrossRef Pubmed Google scholar
[74]
Shigeishi H, Yokozaki H, Kuniyasu H, Nakagawa H, Ishikawa T, Tahara E, Yasui W (2001b). No mutations of the Bub1 gene in human gastric carcinomas. Oncol Rep, 8(4): 791–794
Pubmed
[75]
Silkworth W T, Nardi I K, Scholl L M, Cimini D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE, 4(8): e6564
CrossRef Pubmed Google scholar
[76]
Stegmeier F, Rape M, Draviam V M, Nalepa G, Sowa M E, Ang X L, McDonald E R 3rd, Li M Z, Hannon G J, Sorger P K, Kirschner M W, Harper J W, Elledge S J (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature, 446(7138): 876–881
CrossRef Pubmed Google scholar
[77]
Sudakin V, Chan G K, Yen T J (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol, 154(5): 925–936
CrossRef Pubmed Google scholar
[78]
Suijkerbuijk S J, Kops G J (2008). Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta, 1786(1): 24–31
Pubmed
[79]
Sze K M, Ching Y P, Jin D Y, Ng I O (2004). Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells. J Biomed Sci, 11(6): 920–927
CrossRef Pubmed Google scholar
[80]
Takahashi T, Haruki N, Nomoto S, Masuda A, Saji S, Osada H, Takahashi T (1999). Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene, 18(30): 4295–4300
CrossRef Pubmed Google scholar
[81]
Tanaka K, Mohri Y, Ohi M, Yokoe T, Koike Y, Morimoto Y, Miki C, Tonouchi H, Kusunoki M (2008). Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol), 20(8): 639–646
CrossRef Pubmed Google scholar
[82]
Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said J W, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 20(25): 3301–3305
CrossRef Pubmed Google scholar
[83]
Tyson J J, Novak B (2008). Temporal organization of the cell cycle. Curr Biol, 18(17): R759–R768
CrossRef Pubmed Google scholar
[84]
Wada N, Yoshida A, Miyagi Y, Yamamoto T, Nakayama H, Suganuma N, Matsuzu K, Masudo K, Hirakawa S, Rino Y, Masuda M, Imada T (2008). Overexpression of the mitotic spindle assembly checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive nature. Anticancer Res, 28(1A): 139–144
Pubmed
[85]
Wang L, Yin F, Du Y, Chen B, Liang S, Zhang Y, Du W, Wu K, Ding J, Fan D (2010). Depression of MAD2 inhibits apoptosis and increases proliferation and multidrug resistance in gastric cancer cells by regulating the activation of phosphorylated survivin. Tumour Biol, 31(3): 225–232
CrossRef Pubmed Google scholar
[86]
Wang Z M, Lin H K, Zhu S R, Liu T F, Zhou Z F, Chen Y T (2000). Synthesis, characterization and cytotoxicity of lanthanum(III) complexes with novel 1,10-phenanthroline-2,9-bis-alpha-amino acid conjugates. Anticancer Drug Des, 15(6): 405–411
Pubmed
[87]
Weaver B A, Silk A D, Montagna C, Verdier-Pinard P, Cleveland D W (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11(1): 25–36
CrossRef Pubmed Google scholar
[88]
Weitzel D H, Vandré D D (2000). Differential spindle assembly checkpoint response in human lung adenocarcinoma cells. Cell Tissue Res, 300(1): 57–65
CrossRef Pubmed Google scholar
[89]
Yamaguchi K, Okami K, Hibi K, Wehage S L, Jen J, Sidransky D (1999). Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett, 139(2): 183–187
CrossRef Pubmed Google scholar
[90]
Yoon D S, Wersto R P, Zhou W, Chrest F J, Garrett E S, Kwon T K, Gabrielson E (2002). Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol, 161(2): 391–397
Pubmed
[91]
Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff K L, Oh D C, Hathaway N, Dimova N, Cuny G D, King R W (2010). Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell, 18(4): 382–395
CrossRef Pubmed Google scholar

Acknowledgments

H.B. was supported by grant #04-GBMC-CICS-09, from CESPU – Cooperativa de Ensino Superior Politécnico e Universitário.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(320 KB)

Accesses

Citations

Detail

Sections
Recommended

/