REVIEW

Maize centromeres: where sequence meets epigenetics

  • Wenchao YIN 1,3 ,
  • James A. BIRCHLER , 2 ,
  • Fangpu HAN , 1
Expand
  • 1. State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • 2. Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
  • 3. Graduate Universtiy of the Chinese Academy of Sciences, Beijing 100039, China

Received date: 26 Nov 2010

Accepted date: 16 Dec 2010

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.

Cite this article

Wenchao YIN , James A. BIRCHLER , Fangpu HAN . Maize centromeres: where sequence meets epigenetics[J]. Frontiers in Biology, 2011 , 6(2) : 102 -108 . DOI: 10.1007/s11515-011-1118-6

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31071083) and National Science Foundation (No. DBI0922703).
1
Alfenito M R, Birchler J A (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics, 135(2): 589–597

PMID

2
Allshire R C, Karpen G H (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 9(12): 923–937

DOI PMID

3
Amor D J, Choo K H A (2002). Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 71(4): 695–714

DOI PMID

4
Ananiev E V, Phillips R L, Rines H W (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A, 95(22): 13073–13078

DOI PMID

5
Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002). CENP-A, -B, and-C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol, 22(7): 2229–2241

DOI PMID

6
Birchler J A, Han F P (2009). Maize centromeres: structure, function, epigenetics. Annu Rev Genet, 43(1): 287–303

DOI PMID

7
Blower M D, Sullivan B A, Karpen G H (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2(3): 319–330

DOI PMID

8
Carlson W R (1969). Factors affecting preferential fertilization in maize. Genetics, 62(3): 543–554

PMID

9
Carlson W R, Phillips R (1986). The B-chromosome of maize. Crit Rev Plant Sci, 3(3): 201–226

DOI

10
Choo K H A (1997). Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet, 61(6): 1225–1233

DOI PMID

11
Dawe R K, Hiatt E N (2004). Plant neocentromeres: fast, focused, and driven. Chromosome Res, 12(6): 655–669

DOI PMID

12
Dawe R K, Reed L M, Yu H G, Muszynski M G, Hiatt E N (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell, 11(7): 1227–1238

PMID

13
Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J (2010). Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res, 129(1-3): 82–96

DOI PMID

14
Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande W Z (2005). A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol, 15(10): 948–954

DOI PMID

15
Han F P, Gao Z, Birchler J A (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell, 21(7): 1929–1939

DOI PMID

16
Han F P, Gao Z, Yu W C, Birchler J A (2007a). Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 19(12): 3853–3863

DOI PMID

17
Han F P, Lamb J C, Birchler J A (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A, 103(9): 3238–3243

DOI PMID

18
Han F P, Lamb J C, Yu W C, Gao Z, Birchler J A (2007b). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell, 19(2): 524–533

DOI PMID

19
Henikoff S, Ahmad K, Malik H S (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 293(5532): 1098–1102

DOI PMID

20
Higgins A W, Gustashaw K M, Willard H F (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res, 13(8): 745–762

DOI PMID

21
Jiang J M, Birchler J A, Parrott W A, Dawe R K (2003). A molecular view of plant centromeres. Trends Plant Sci, 8(12): 570–575

DOI PMID

22
Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 16(3): 571–581

DOI PMID

23
Jones R N, Rees H (1982). B chromosomes. London, Academic Press

24
Lamb J C, Kato A, Birchler J A (2005). Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 113(7): 337–349

DOI PMID

25
Lin B Y (1978). Regional control of nondisjunction of the B chromosome in maize. Genetics, 90(3): 613–627

PMID

26
Malik H S, Henikoff S (2009). Major evolutionary transitions in centromere complexity. Cell, 138(6): 1067–1082

DOI PMID

27
McClintock B (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A, 25(8): 405–416

DOI PMID

28
McClintock B (1941). The stability of broken ends of chromosomes in Zea mays. Genetics, 26(2): 234–282

PMID

29
Mroczek R J, Dawe R K (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics, 165(2): 809–819

PMID

30
Nagaki K, Song J Q, Stupar R M, Parokonny A S, Yuan Q P, Ouyang S, Liu J, Hsiao J, Jones K M, Dawe R K, Buell C R, Jiang J M (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 163(2): 759–770

PMID

31
Nasuda S, Hudakova S, Schubert I, Houben A, Endo T R (2005). Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A, 102(28): 9842–9847

DOI PMID

32
Page S L, Shaffer L G (1998). Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res, 6(2): 115–122

DOI PMID

33
Presting G G, Malysheva L, Fuchs J, Schubert I Z (1998). A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J, 16(6): 721–728

DOI PMID

34
Rhoades M M, Vilkomerson H (1942). On the anaphase movement of chromosomes. Proc Natl Acad Sci U S A, 28(10): 433–436

DOI PMID

35
Roman H (1947). Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics, 32: 391–409

36
Roman H (1948). Directed fertilization in maize. Proc Natl Acad Sci USA, 34(2): 36–42

DOI

37
Shelby R D, Monier K, Sullivan K F (2000). Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol, 151(5): 1113–1118

DOI PMID

38
Stimpson K M, Song I Y, Jauch A, Holtgreve-Grez H, Hayden K E, Bridger J M, Sullivan B A, Copenhaver G P (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet, 6(8): e1001061

DOI PMID

39
Stimpson K M, Sullivan B A (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol, 22(6): 1–9

DOI PMID

40
Sullivan B A, Willard H F (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20(3): 227–228

DOI PMID

41
Topp C N, Okagaki R J, Melo J R, Kynast R G, Phillips R L, Dawe R K (2009). Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res, 124(3-4): 228–238

DOI PMID

42
Van Hooser A A, Ouspenski I I, Gregson H C, Starr D A, Yen T J, Goldberg M L, Yokomori K, Earnshaw W C, Sullivan K F, Brinkley B R (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci, 114(Pt 19): 3529–3542

PMID

43
Voullaire L E, Slater H R, Petrovic V, Choo K H A (1993). A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet, 52(6): 1153–1163

PMID

44
Ward E J (1973). Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics, 73(3): 387–391

PMID

45
Watanabe Y (2005). Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 17(6): 590–595

DOI PMID

46
Yu W C, Han F P, Gao Z, Vega J M, Birchler J A (2007). Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A, 104(21): 8924–8929

DOI PMID

47
Yu W C, Lamb J C, Han F P, Birchler J A (2006). Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A, 103(46): 17331–17336

DOI PMID

48
Zhang W L, Friebe B, Gill B S, Jiang J M (2010). Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 119(5): 553–563

DOI PMID

49
Zheng Y Z, Roseman R R, Carlson W R (1999). Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics, 153(3): 1435–1444

PMID

50
Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, Dawe R K (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14(11): 2825–2836

DOI PMID

Outlines

/