Received date: 26 Nov 2010
Accepted date: 16 Dec 2010
Published date: 01 Apr 2011
Copyright
The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.
Key words: centromere; centromere inactivation; centromere reactivation; nondisjunction; maize
Wenchao YIN , James A. BIRCHLER , Fangpu HAN . Maize centromeres: where sequence meets epigenetics[J]. Frontiers in Biology, 2011 , 6(2) : 102 -108 . DOI: 10.1007/s11515-011-1118-6
1 |
Alfenito M R, Birchler J A (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics, 135(2): 589–597
|
2 |
Allshire R C, Karpen G H (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 9(12): 923–937
|
3 |
Amor D J, Choo K H A (2002). Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 71(4): 695–714
|
4 |
Ananiev E V, Phillips R L, Rines H W (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A, 95(22): 13073–13078
|
5 |
Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002). CENP-A, -B, and-C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol, 22(7): 2229–2241
|
6 |
Birchler J A, Han F P (2009). Maize centromeres: structure, function, epigenetics. Annu Rev Genet, 43(1): 287–303
|
7 |
Blower M D, Sullivan B A, Karpen G H (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2(3): 319–330
|
8 |
Carlson W R (1969). Factors affecting preferential fertilization in maize. Genetics, 62(3): 543–554
|
9 |
Carlson W R, Phillips R (1986). The B-chromosome of maize. Crit Rev Plant Sci, 3(3): 201–226
|
10 |
Choo K H A (1997). Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet, 61(6): 1225–1233
|
11 |
Dawe R K, Hiatt E N (2004). Plant neocentromeres: fast, focused, and driven. Chromosome Res, 12(6): 655–669
|
12 |
Dawe R K, Reed L M, Yu H G, Muszynski M G, Hiatt E N (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell, 11(7): 1227–1238
|
13 |
Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J (2010). Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res, 129(1-3): 82–96
|
14 |
Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande W Z (2005). A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol, 15(10): 948–954
|
15 |
Han F P, Gao Z, Birchler J A (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell, 21(7): 1929–1939
|
16 |
Han F P, Gao Z, Yu W C, Birchler J A (2007a). Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 19(12): 3853–3863
|
17 |
Han F P, Lamb J C, Birchler J A (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A, 103(9): 3238–3243
|
18 |
Han F P, Lamb J C, Yu W C, Gao Z, Birchler J A (2007b). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell, 19(2): 524–533
|
19 |
Henikoff S, Ahmad K, Malik H S (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 293(5532): 1098–1102
|
20 |
Higgins A W, Gustashaw K M, Willard H F (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res, 13(8): 745–762
|
21 |
Jiang J M, Birchler J A, Parrott W A, Dawe R K (2003). A molecular view of plant centromeres. Trends Plant Sci, 8(12): 570–575
|
22 |
Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 16(3): 571–581
|
23 |
Jones R N, Rees H (1982). B chromosomes. London, Academic Press
|
24 |
Lamb J C, Kato A, Birchler J A (2005). Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 113(7): 337–349
|
25 |
Lin B Y (1978). Regional control of nondisjunction of the B chromosome in maize. Genetics, 90(3): 613–627
|
26 |
Malik H S, Henikoff S (2009). Major evolutionary transitions in centromere complexity. Cell, 138(6): 1067–1082
|
27 |
McClintock B (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A, 25(8): 405–416
|
28 |
McClintock B (1941). The stability of broken ends of chromosomes in Zea mays. Genetics, 26(2): 234–282
|
29 |
Mroczek R J, Dawe R K (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics, 165(2): 809–819
|
30 |
Nagaki K, Song J Q, Stupar R M, Parokonny A S, Yuan Q P, Ouyang S, Liu J, Hsiao J, Jones K M, Dawe R K, Buell C R, Jiang J M (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 163(2): 759–770
|
31 |
Nasuda S, Hudakova S, Schubert I, Houben A, Endo T R (2005). Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A, 102(28): 9842–9847
|
32 |
Page S L, Shaffer L G (1998). Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res, 6(2): 115–122
|
33 |
Presting G G, Malysheva L, Fuchs J, Schubert I Z (1998). A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J, 16(6): 721–728
|
34 |
Rhoades M M, Vilkomerson H (1942). On the anaphase movement of chromosomes. Proc Natl Acad Sci U S A, 28(10): 433–436
|
35 |
Roman H (1947). Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics, 32: 391–409
|
36 |
Roman H (1948). Directed fertilization in maize. Proc Natl Acad Sci USA, 34(2): 36–42
|
37 |
Shelby R D, Monier K, Sullivan K F (2000). Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol, 151(5): 1113–1118
|
38 |
Stimpson K M, Song I Y, Jauch A, Holtgreve-Grez H, Hayden K E, Bridger J M, Sullivan B A, Copenhaver G P (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet, 6(8): e1001061
|
39 |
Stimpson K M, Sullivan B A (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol, 22(6): 1–9
|
40 |
Sullivan B A, Willard H F (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20(3): 227–228
|
41 |
Topp C N, Okagaki R J, Melo J R, Kynast R G, Phillips R L, Dawe R K (2009). Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res, 124(3-4): 228–238
|
42 |
Van Hooser A A, Ouspenski I I, Gregson H C, Starr D A, Yen T J, Goldberg M L, Yokomori K, Earnshaw W C, Sullivan K F, Brinkley B R (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci, 114(Pt 19): 3529–3542
|
43 |
Voullaire L E, Slater H R, Petrovic V, Choo K H A (1993). A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet, 52(6): 1153–1163
|
44 |
Ward E J (1973). Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics, 73(3): 387–391
|
45 |
Watanabe Y (2005). Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 17(6): 590–595
|
46 |
Yu W C, Han F P, Gao Z, Vega J M, Birchler J A (2007). Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A, 104(21): 8924–8929
|
47 |
Yu W C, Lamb J C, Han F P, Birchler J A (2006). Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A, 103(46): 17331–17336
|
48 |
Zhang W L, Friebe B, Gill B S, Jiang J M (2010). Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 119(5): 553–563
|
49 |
Zheng Y Z, Roseman R R, Carlson W R (1999). Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics, 153(3): 1435–1444
|
50 |
Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, Dawe R K (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14(11): 2825–2836
|
/
〈 | 〉 |