Maize centromeres: where sequence meets epigenetics

Wenchao YIN, James A. BIRCHLER, Fangpu HAN

PDF(222 KB)
PDF(222 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 102-108. DOI: 10.1007/s11515-011-1118-6
REVIEW
REVIEW

Maize centromeres: where sequence meets epigenetics

Author information +
History +

Abstract

The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.

Keywords

centromere / centromere inactivation / centromere reactivation / nondisjunction / maize

Cite this article

Download citation ▾
Wenchao YIN, James A. BIRCHLER, Fangpu HAN. Maize centromeres: where sequence meets epigenetics. Front Biol, 2011, 6(2): 102‒108 https://doi.org/10.1007/s11515-011-1118-6

References

[1]
Alfenito M R, Birchler J A (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics, 135(2): 589–597
Pubmed
[2]
Allshire R C, Karpen G H (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 9(12): 923–937
CrossRef Pubmed Google scholar
[3]
Amor D J, Choo K H A (2002). Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 71(4): 695–714
CrossRef Pubmed Google scholar
[4]
Ananiev E V, Phillips R L, Rines H W (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A, 95(22): 13073–13078
CrossRef Pubmed Google scholar
[5]
Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002). CENP-A, -B, and-C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol, 22(7): 2229–2241
CrossRef Pubmed Google scholar
[6]
Birchler J A, Han F P (2009). Maize centromeres: structure, function, epigenetics. Annu Rev Genet, 43(1): 287–303
CrossRef Pubmed Google scholar
[7]
Blower M D, Sullivan B A, Karpen G H (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2(3): 319–330
CrossRef Pubmed Google scholar
[8]
Carlson W R (1969). Factors affecting preferential fertilization in maize. Genetics, 62(3): 543–554
Pubmed
[9]
Carlson W R, Phillips R (1986). The B-chromosome of maize. Crit Rev Plant Sci, 3(3): 201–226
CrossRef Google scholar
[10]
Choo K H A (1997). Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet, 61(6): 1225–1233
CrossRef Pubmed Google scholar
[11]
Dawe R K, Hiatt E N (2004). Plant neocentromeres: fast, focused, and driven. Chromosome Res, 12(6): 655–669
CrossRef Pubmed Google scholar
[12]
Dawe R K, Reed L M, Yu H G, Muszynski M G, Hiatt E N (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell, 11(7): 1227–1238
Pubmed
[13]
Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J (2010). Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res, 129(1-3): 82–96
CrossRef Pubmed Google scholar
[14]
Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande W Z (2005). A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol, 15(10): 948–954
CrossRef Pubmed Google scholar
[15]
Han F P, Gao Z, Birchler J A (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell, 21(7): 1929–1939
CrossRef Pubmed Google scholar
[16]
Han F P, Gao Z, Yu W C, Birchler J A (2007a). Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 19(12): 3853–3863
CrossRef Pubmed Google scholar
[17]
Han F P, Lamb J C, Birchler J A (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A, 103(9): 3238–3243
CrossRef Pubmed Google scholar
[18]
Han F P, Lamb J C, Yu W C, Gao Z, Birchler J A (2007b). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell, 19(2): 524–533
CrossRef Pubmed Google scholar
[19]
Henikoff S, Ahmad K, Malik H S (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 293(5532): 1098–1102
CrossRef Pubmed Google scholar
[20]
Higgins A W, Gustashaw K M, Willard H F (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res, 13(8): 745–762
CrossRef Pubmed Google scholar
[21]
Jiang J M, Birchler J A, Parrott W A, Dawe R K (2003). A molecular view of plant centromeres. Trends Plant Sci, 8(12): 570–575
CrossRef Pubmed Google scholar
[22]
Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 16(3): 571–581
CrossRef Pubmed Google scholar
[23]
Jones R N, Rees H (1982). B chromosomes. London, Academic Press
[24]
Lamb J C, Kato A, Birchler J A (2005). Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma, 113(7): 337–349
CrossRef Pubmed Google scholar
[25]
Lin B Y (1978). Regional control of nondisjunction of the B chromosome in maize. Genetics, 90(3): 613–627
Pubmed
[26]
Malik H S, Henikoff S (2009). Major evolutionary transitions in centromere complexity. Cell, 138(6): 1067–1082
CrossRef Pubmed Google scholar
[27]
McClintock B (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A, 25(8): 405–416
CrossRef Pubmed Google scholar
[28]
McClintock B (1941). The stability of broken ends of chromosomes in Zea mays. Genetics, 26(2): 234–282
Pubmed
[29]
Mroczek R J, Dawe R K (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics, 165(2): 809–819
Pubmed
[30]
Nagaki K, Song J Q, Stupar R M, Parokonny A S, Yuan Q P, Ouyang S, Liu J, Hsiao J, Jones K M, Dawe R K, Buell C R, Jiang J M (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 163(2): 759–770
Pubmed
[31]
Nasuda S, Hudakova S, Schubert I, Houben A, Endo T R (2005). Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A, 102(28): 9842–9847
CrossRef Pubmed Google scholar
[32]
Page S L, Shaffer L G (1998). Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res, 6(2): 115–122
CrossRef Pubmed Google scholar
[33]
Presting G G, Malysheva L, Fuchs J, Schubert I Z (1998). A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J, 16(6): 721–728
CrossRef Pubmed Google scholar
[34]
Rhoades M M, Vilkomerson H (1942). On the anaphase movement of chromosomes. Proc Natl Acad Sci U S A, 28(10): 433–436
CrossRef Pubmed Google scholar
[35]
Roman H (1947). Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics, 32: 391–409
[36]
Roman H (1948). Directed fertilization in maize. Proc Natl Acad Sci USA, 34(2): 36–42
CrossRef Google scholar
[37]
Shelby R D, Monier K, Sullivan K F (2000). Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol, 151(5): 1113–1118
CrossRef Pubmed Google scholar
[38]
Stimpson K M, Song I Y, Jauch A, Holtgreve-Grez H, Hayden K E, Bridger J M, Sullivan B A, Copenhaver G P (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet, 6(8): e1001061
CrossRef Pubmed Google scholar
[39]
Stimpson K M, Sullivan B A (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol, 22(6): 1–9
CrossRef Pubmed Google scholar
[40]
Sullivan B A, Willard H F (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20(3): 227–228
CrossRef Pubmed Google scholar
[41]
Topp C N, Okagaki R J, Melo J R, Kynast R G, Phillips R L, Dawe R K (2009). Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res, 124(3-4): 228–238
CrossRef Pubmed Google scholar
[42]
Van Hooser A A, Ouspenski I I, Gregson H C, Starr D A, Yen T J, Goldberg M L, Yokomori K, Earnshaw W C, Sullivan K F, Brinkley B R (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci, 114(Pt 19): 3529–3542
Pubmed
[43]
Voullaire L E, Slater H R, Petrovic V, Choo K H A (1993). A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet, 52(6): 1153–1163
Pubmed
[44]
Ward E J (1973). Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics, 73(3): 387–391
Pubmed
[45]
Watanabe Y (2005). Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 17(6): 590–595
CrossRef Pubmed Google scholar
[46]
Yu W C, Han F P, Gao Z, Vega J M, Birchler J A (2007). Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A, 104(21): 8924–8929
CrossRef Pubmed Google scholar
[47]
Yu W C, Lamb J C, Han F P, Birchler J A (2006). Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A, 103(46): 17331–17336
CrossRef Pubmed Google scholar
[48]
Zhang W L, Friebe B, Gill B S, Jiang J M (2010). Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 119(5): 553–563
CrossRef Pubmed Google scholar
[49]
Zheng Y Z, Roseman R R, Carlson W R (1999). Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics, 153(3): 1435–1444
Pubmed
[50]
Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, Dawe R K (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell, 14(11): 2825–2836
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31071083) and National Science Foundation (No. DBI0922703).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(222 KB)

Accesses

Citations

Detail

Sections
Recommended

/