REVIEW

3C-based methods to detect long-range chromatin interactions

  • Gang WEI ,
  • Keji ZHAO
Expand
  • Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

Received date: 30 Sep 2010

Accepted date: 08 Nov 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Transcriptional regulatory regions are often located several thousand bases from the gene that they control. To function, the chromatin strand forms loops to juxtapose distal regions with the promoter. These long-range chromatin interactions have profound influences on the regulation of gene expression and mapping these interactions is currently a subject of intensive investigation. Chromosome conformation capture (3C) technology and its derivatives have been widely used to detect chromatin interactions and greatly contributed to understanding of the relationship between genome organization and genome function. Here we review these 3C-based methods for the study of long-range chromatin interactions and recent exciting findings obtained by using these technologies.

Cite this article

Gang WEI , Keji ZHAO . 3C-based methods to detect long-range chromatin interactions[J]. Frontiers in Biology, 2011 , 06(01) : 76 -81 . DOI: 10.1007/s11515-011-0980-6

Acknowledgments

We thank Dr. Daniel Northrup for critical reading of the manuscript. Research in the authors’ laboratory is supported by the Intramural Research Program of the National Heart, Lung and Blood Institute, National Institutes of Health, USA.
1
Barski A, Cuddapah S, Cui K R, Roh T Y, Schones D E, Wang Z B, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837

DOI PMID

2
Boyle A P, Davis S, Shulha H P, Meltzer P, Margulies E H, Weng Z, Furey T S, Crawford G E (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2): 311–322

DOI PMID

3
Cai S T, Lee C C, Kohwi-Shigematsu T (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet, 38(11): 1278–1288

DOI PMID

4
Carroll J S, Liu X S, Brodsky A S, Li W, Meyer C A, Szary A J, Eeckhoute J, Shao W L, Hestermann E V, Geistlinger T R, Fox E A, Silver P A, Brown M (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122(1): 33–43

DOI PMID

5
Carter D, Chakalova L, Osborne C S, Dai Y F, Fraser P (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet, 32(4): 623–626

DOI PMID

6
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311

DOI PMID

7
Dostie J, Dekker J (2006). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988–1002

DOI

8
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309

DOI PMID

9
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim Y J, Lee C, Shendure J, Fields S, Blau C A, Noble W S (2010). A three-dimensional model of the yeast genome. Nature, 465(7296): 363–367

DOI PMID

10
ENCODE project consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696): 636–640

DOI PMID

11
Fullwood M J, Liu M H, Pan Y F, Liu J, Xu H, Mohamed Y B, Orlov Y L, Velkov S, Ho A, Mei P H, Chew E G, Huang P Y, Welboren W J, Han Y, Ooi H S, Ariyaratne P N, Vega V B, Luo Y, Tan P Y, Choy P Y, Wansa K D, Zhao B, Lim K S, Leow S C, Yow J S, Joseph R, Li H, Desai K V, Thomsen J S, Lee Y K, Karuturi R K, Herve T, Bourque G, Stunnenberg H G, Ruan X, Cacheux-Rataboul V, Sung W K, Liu E T, Wei C L, Cheung E, Ruan Y (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269): 58–64

DOI PMID

12
Göndör A, Ohlsson R (2009). Chromosome crosstalk in three dimensions. Nature, 461(7261): 212–217

DOI PMID

13
Horike S, Cai S T, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40

PMID

14
Johnson D S, Mortazavi A, Myers R M, Wold B (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830): 1497–1502

DOI PMID

15
Kim S I, Bresnick E H, Bultman S J (2009). BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res, 37(18): 6019–6027

DOI PMID

16
Lajoie B R, van Berkum N L, Sanyal A, Dekker J (2009). My5C: web tools for chromosome conformation capture studies. Nat Methods, 6(10): 690–691

DOI PMID

17
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115

DOI PMID

18
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293

DOI PMID

19
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800

DOI PMID

20
Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet, 36(8): 889–893

DOI PMID

21
Palstra R J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 35(2): 190–194

DOI PMID

22
Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5): 887–898

DOI PMID

23
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354

DOI PMID

24
Spilianakis C G, Flavell R A (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 5(10): 1017–1027

DOI PMID

25
Spilianakis C G, Lalioti M D, Town T, Lee G R, Flavell R A (2005). Interchromosomal associations between alternatively expressed loci. Nature, 435(7042): 637–645

DOI PMID

26
Splinter E, Heath H, Kooren J, Palstra R J, Klous P, Grosveld F, Galjart N, de Laat W (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 20(17): 2349–2354

DOI PMID

27
Tiwari V K, Cope L, McGarvey K M, Ohm J E, Baylin S B (2008). A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res, 18(7): 1171–1179

DOI PMID

28
Tolhuis B, Palstra R J, Splinter E, Grosveld F, de Laat W (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell, 10(6): 1453–1465

DOI PMID

29
Vakoc C R, Letting D L, Gheldof N, Sawado T, Bender M A, Groudine M, Weiss M J, Dekker J, Blobel G A (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17(3): 453–462

DOI PMID

30
Wang Z, Schones D E, Zhao K (2009). Characterization of human epigenomes. Curr Opin Genet Dev, 19(2): 127–134

DOI PMID

31
Würtele H, Chartrand P (2006). Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res, 14(5): 477–495

DOI PMID

32
Xu N, Tsai C L, Lee J T (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764): 1149–1152

DOI PMID

33
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K S, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 38(11): 1341–1347

DOI PMID

Outlines

/