3C-based methods to detect long-range chromatin interactions

Gang WEI, Keji ZHAO

PDF(187 KB)
PDF(187 KB)
Front. Biol. ›› 2011, Vol. 06 ›› Issue (01) : 76-81. DOI: 10.1007/s11515-011-0980-6
REVIEW
REVIEW

3C-based methods to detect long-range chromatin interactions

Author information +
History +

Abstract

Transcriptional regulatory regions are often located several thousand bases from the gene that they control. To function, the chromatin strand forms loops to juxtapose distal regions with the promoter. These long-range chromatin interactions have profound influences on the regulation of gene expression and mapping these interactions is currently a subject of intensive investigation. Chromosome conformation capture (3C) technology and its derivatives have been widely used to detect chromatin interactions and greatly contributed to understanding of the relationship between genome organization and genome function. Here we review these 3C-based methods for the study of long-range chromatin interactions and recent exciting findings obtained by using these technologies.

Keywords

chromatin interactions / 3C / gene regulation / next-generation sequencing

Cite this article

Download citation ▾
Gang WEI, Keji ZHAO. 3C-based methods to detect long-range chromatin interactions. Front Biol, 2011, 06(01): 76‒81 https://doi.org/10.1007/s11515-011-0980-6

References

[1]
Barski A, Cuddapah S, Cui K R, Roh T Y, Schones D E, Wang Z B, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837
CrossRef Pubmed Google scholar
[2]
Boyle A P, Davis S, Shulha H P, Meltzer P, Margulies E H, Weng Z, Furey T S, Crawford G E (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2): 311–322
CrossRef Pubmed Google scholar
[3]
Cai S T, Lee C C, Kohwi-Shigematsu T (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet, 38(11): 1278–1288
CrossRef Pubmed Google scholar
[4]
Carroll J S, Liu X S, Brodsky A S, Li W, Meyer C A, Szary A J, Eeckhoute J, Shao W L, Hestermann E V, Geistlinger T R, Fox E A, Silver P A, Brown M (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122(1): 33–43
CrossRef Pubmed Google scholar
[5]
Carter D, Chakalova L, Osborne C S, Dai Y F, Fraser P (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet, 32(4): 623–626
CrossRef Pubmed Google scholar
[6]
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311
CrossRef Pubmed Google scholar
[7]
Dostie J, Dekker J (2006). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988–1002
CrossRef Google scholar
[8]
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309
CrossRef Pubmed Google scholar
[9]
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim Y J, Lee C, Shendure J, Fields S, Blau C A, Noble W S (2010). A three-dimensional model of the yeast genome. Nature, 465(7296): 363–367
CrossRef Pubmed Google scholar
[10]
ENCODE project consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696): 636–640
CrossRef Pubmed Google scholar
[11]
Fullwood M J, Liu M H, Pan Y F, Liu J, Xu H, Mohamed Y B, Orlov Y L, Velkov S, Ho A, Mei P H, Chew E G, Huang P Y, Welboren W J, Han Y, Ooi H S, Ariyaratne P N, Vega V B, Luo Y, Tan P Y, Choy P Y, Wansa K D, Zhao B, Lim K S, Leow S C, Yow J S, Joseph R, Li H, Desai K V, Thomsen J S, Lee Y K, Karuturi R K, Herve T, Bourque G, Stunnenberg H G, Ruan X, Cacheux-Rataboul V, Sung W K, Liu E T, Wei C L, Cheung E, Ruan Y (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269): 58–64
CrossRef Pubmed Google scholar
[12]
Göndör A, Ohlsson R (2009). Chromosome crosstalk in three dimensions. Nature, 461(7261): 212–217
CrossRef Pubmed Google scholar
[13]
Horike S, Cai S T, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40
Pubmed
[14]
Johnson D S, Mortazavi A, Myers R M, Wold B (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830): 1497–1502
CrossRef Pubmed Google scholar
[15]
Kim S I, Bresnick E H, Bultman S J (2009). BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res, 37(18): 6019–6027
CrossRef Pubmed Google scholar
[16]
Lajoie B R, van Berkum N L, Sanyal A, Dekker J (2009). My5C: web tools for chromosome conformation capture studies. Nat Methods, 6(10): 690–691
CrossRef Pubmed Google scholar
[17]
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115
CrossRef Pubmed Google scholar
[18]
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293
CrossRef Pubmed Google scholar
[19]
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800
CrossRef Pubmed Google scholar
[20]
Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet, 36(8): 889–893
CrossRef Pubmed Google scholar
[21]
Palstra R J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 35(2): 190–194
CrossRef Pubmed Google scholar
[22]
Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5): 887–898
CrossRef Pubmed Google scholar
[23]
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
CrossRef Pubmed Google scholar
[24]
Spilianakis C G, Flavell R A (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 5(10): 1017–1027
CrossRef Pubmed Google scholar
[25]
Spilianakis C G, Lalioti M D, Town T, Lee G R, Flavell R A (2005). Interchromosomal associations between alternatively expressed loci. Nature, 435(7042): 637–645
CrossRef Pubmed Google scholar
[26]
Splinter E, Heath H, Kooren J, Palstra R J, Klous P, Grosveld F, Galjart N, de Laat W (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 20(17): 2349–2354
CrossRef Pubmed Google scholar
[27]
Tiwari V K, Cope L, McGarvey K M, Ohm J E, Baylin S B (2008). A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res, 18(7): 1171–1179
CrossRef Pubmed Google scholar
[28]
Tolhuis B, Palstra R J, Splinter E, Grosveld F, de Laat W (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell, 10(6): 1453–1465
CrossRef Pubmed Google scholar
[29]
Vakoc C R, Letting D L, Gheldof N, Sawado T, Bender M A, Groudine M, Weiss M J, Dekker J, Blobel G A (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17(3): 453–462
CrossRef Pubmed Google scholar
[30]
Wang Z, Schones D E, Zhao K (2009). Characterization of human epigenomes. Curr Opin Genet Dev, 19(2): 127–134
CrossRef Pubmed Google scholar
[31]
Würtele H, Chartrand P (2006). Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res, 14(5): 477–495
CrossRef Pubmed Google scholar
[32]
Xu N, Tsai C L, Lee J T (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764): 1149–1152
CrossRef Pubmed Google scholar
[33]
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K S, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 38(11): 1341–1347
CrossRef Pubmed Google scholar

Acknowledgments

We thank Dr. Daniel Northrup for critical reading of the manuscript. Research in the authors’ laboratory is supported by the Intramural Research Program of the National Heart, Lung and Blood Institute, National Institutes of Health, USA.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(187 KB)

Accesses

Citations

Detail

Sections
Recommended

/