3C-based methods to detect long-range chromatin interactions
Gang WEI, Keji ZHAO
3C-based methods to detect long-range chromatin interactions
Transcriptional regulatory regions are often located several thousand bases from the gene that they control. To function, the chromatin strand forms loops to juxtapose distal regions with the promoter. These long-range chromatin interactions have profound influences on the regulation of gene expression and mapping these interactions is currently a subject of intensive investigation. Chromosome conformation capture (3C) technology and its derivatives have been widely used to detect chromatin interactions and greatly contributed to understanding of the relationship between genome organization and genome function. Here we review these 3C-based methods for the study of long-range chromatin interactions and recent exciting findings obtained by using these technologies.
chromatin interactions / 3C / gene regulation / next-generation sequencing
[1] |
Barski A, Cuddapah S, Cui K R, Roh T Y, Schones D E, Wang Z B, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837
CrossRef
Pubmed
Google scholar
|
[2] |
Boyle A P, Davis S, Shulha H P, Meltzer P, Margulies E H, Weng Z, Furey T S, Crawford G E (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2): 311–322
CrossRef
Pubmed
Google scholar
|
[3] |
Cai S T, Lee C C, Kohwi-Shigematsu T (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet, 38(11): 1278–1288
CrossRef
Pubmed
Google scholar
|
[4] |
Carroll J S, Liu X S, Brodsky A S, Li W, Meyer C A, Szary A J, Eeckhoute J, Shao W L, Hestermann E V, Geistlinger T R, Fox E A, Silver P A, Brown M (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122(1): 33–43
CrossRef
Pubmed
Google scholar
|
[5] |
Carter D, Chakalova L, Osborne C S, Dai Y F, Fraser P (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet, 32(4): 623–626
CrossRef
Pubmed
Google scholar
|
[6] |
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311
CrossRef
Pubmed
Google scholar
|
[7] |
Dostie J, Dekker J (2006). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988–1002
CrossRef
Google scholar
|
[8] |
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309
CrossRef
Pubmed
Google scholar
|
[9] |
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim Y J, Lee C, Shendure J, Fields S, Blau C A, Noble W S (2010). A three-dimensional model of the yeast genome. Nature, 465(7296): 363–367
CrossRef
Pubmed
Google scholar
|
[10] |
ENCODE project consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696): 636–640
CrossRef
Pubmed
Google scholar
|
[11] |
Fullwood M J, Liu M H, Pan Y F, Liu J, Xu H, Mohamed Y B, Orlov Y L, Velkov S, Ho A, Mei P H, Chew E G, Huang P Y, Welboren W J, Han Y, Ooi H S, Ariyaratne P N, Vega V B, Luo Y, Tan P Y, Choy P Y, Wansa K D, Zhao B, Lim K S, Leow S C, Yow J S, Joseph R, Li H, Desai K V, Thomsen J S, Lee Y K, Karuturi R K, Herve T, Bourque G, Stunnenberg H G, Ruan X, Cacheux-Rataboul V, Sung W K, Liu E T, Wei C L, Cheung E, Ruan Y (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269): 58–64
CrossRef
Pubmed
Google scholar
|
[12] |
Göndör A, Ohlsson R (2009). Chromosome crosstalk in three dimensions. Nature, 461(7261): 212–217
CrossRef
Pubmed
Google scholar
|
[13] |
Horike S, Cai S T, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40
Pubmed
|
[14] |
Johnson D S, Mortazavi A, Myers R M, Wold B (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830): 1497–1502
CrossRef
Pubmed
Google scholar
|
[15] |
Kim S I, Bresnick E H, Bultman S J (2009). BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res, 37(18): 6019–6027
CrossRef
Pubmed
Google scholar
|
[16] |
Lajoie B R, van Berkum N L, Sanyal A, Dekker J (2009). My5C: web tools for chromosome conformation capture studies. Nat Methods, 6(10): 690–691
CrossRef
Pubmed
Google scholar
|
[17] |
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115
CrossRef
Pubmed
Google scholar
|
[18] |
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293
CrossRef
Pubmed
Google scholar
|
[19] |
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800
CrossRef
Pubmed
Google scholar
|
[20] |
Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet, 36(8): 889–893
CrossRef
Pubmed
Google scholar
|
[21] |
Palstra R J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet, 35(2): 190–194
CrossRef
Pubmed
Google scholar
|
[22] |
Schones D E, Cui K, Cuddapah S, Roh T Y, Barski A, Wang Z, Wei G, Zhao K (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5): 887–898
CrossRef
Pubmed
Google scholar
|
[23] |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
CrossRef
Pubmed
Google scholar
|
[24] |
Spilianakis C G, Flavell R A (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol, 5(10): 1017–1027
CrossRef
Pubmed
Google scholar
|
[25] |
Spilianakis C G, Lalioti M D, Town T, Lee G R, Flavell R A (2005). Interchromosomal associations between alternatively expressed loci. Nature, 435(7042): 637–645
CrossRef
Pubmed
Google scholar
|
[26] |
Splinter E, Heath H, Kooren J, Palstra R J, Klous P, Grosveld F, Galjart N, de Laat W (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 20(17): 2349–2354
CrossRef
Pubmed
Google scholar
|
[27] |
Tiwari V K, Cope L, McGarvey K M, Ohm J E, Baylin S B (2008). A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res, 18(7): 1171–1179
CrossRef
Pubmed
Google scholar
|
[28] |
Tolhuis B, Palstra R J, Splinter E, Grosveld F, de Laat W (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell, 10(6): 1453–1465
CrossRef
Pubmed
Google scholar
|
[29] |
Vakoc C R, Letting D L, Gheldof N, Sawado T, Bender M A, Groudine M, Weiss M J, Dekker J, Blobel G A (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell, 17(3): 453–462
CrossRef
Pubmed
Google scholar
|
[30] |
Wang Z, Schones D E, Zhao K (2009). Characterization of human epigenomes. Curr Opin Genet Dev, 19(2): 127–134
CrossRef
Pubmed
Google scholar
|
[31] |
Würtele H, Chartrand P (2006). Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res, 14(5): 477–495
CrossRef
Pubmed
Google scholar
|
[32] |
Xu N, Tsai C L, Lee J T (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764): 1149–1152
CrossRef
Pubmed
Google scholar
|
[33] |
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu K S, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006). Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 38(11): 1341–1347
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |