REVIEW

Gold glitters everywhere: nucleus microRNAs and their functions

  • Rui TANG ,
  • Ke ZEN
Expand
  • School of Life Sciences, Nanjing University, Nanjing 210093, China

Received date: 09 Oct 2010

Accepted date: 28 Oct 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

As a highly conserved class of endogenous small (~22 nucleotides) non-coding RNAs, microRNAs (miRNAs) regulate a broad spectrum of biological processes. Increasing evidences suggested that miRNAs generally regulated gene expression at the posttranscriptional stage via inhibiting the translational process or degrading mRNA. Recent studies have also revealed that there is extensive amount of miRNA, as well as miRNA function-related proteins, in the cell nucleus. Although the molecular basis underneath the biogenesis and function of nucleus miRNAs remains largely unknown, the presence of various miRNAs and miRNA function-related proteins in the nucleus strongly argue that miRNAs may execute their role throughout the whole gene expression pathway. Here we review the recent advances in the researches about the nucleus miRNAs, including the biosynthesis pathways, biological functions and potential regulation machinery of nucleus miRNAs.

Cite this article

Rui TANG , Ke ZEN . Gold glitters everywhere: nucleus microRNAs and their functions[J]. Frontiers in Biology, 2011 , 06(01) : 69 -75 . DOI: 10.1007/s11515-011-0990-4

1
Ambros V (2004). The functions of animal microRNAs. Nature, 431(7006): 350–355

DOI PMID

2
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297

DOI PMID

3
Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA, 103(20): 7682–7687

DOI PMID

4
Castanotto D, Lingeman R, Riggs A D, Rossi J J (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA, 106(51): 21655–21659

DOI PMID

5
Emmerth S, Schober H, Gaidatzis D, Roloff T, Jacobeit K, Bühler M (2010). Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev Cell, 18(1): 102–113

DOI PMID

6
Földes-Papp Z, König K, Studier H, Bückle R, Breunig H G, Uchugonova A, Kostner G M (2009). Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol, 10(6): 569–578

DOI PMID

7
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol, 6(8): 784–791

DOI PMID

8
Guang S, Bochner A F, Pavelec D M, Burkhart K B, Harding S, Lachowiec J, Kennedy S (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science, 321(5888): 537–541

DOI PMID

9
Hwang H W, Wentzel E A, Mendell J T (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315(5808): 97–100

DOI PMID

10
Janowski B A, Huffman K E, Schwartz J C, Ram R, Nordsell R, Shames D S, Minna J D, Corey D R (2006). Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol, 13(9): 787–792

DOI PMID

11
Janowski B A, Younger S T, Hardy D B, Ram R, Huffman K E, Corey D R (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol, 3(3): 166–173

DOI PMID

12
Jeffries C D, Fried H M, Perkins D O (2010). Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. Int J Biochem Cell Biol, 42(8): 1236–1242

DOI PMID

13
Kawasaki H, Taira K (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature, 431(7005): 211–217

DOI PMID

14
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235

DOI PMID

15
Li L C, Okino S T, Zhao H, Pookot D, Place R F, Urakami S, Enokida H, Dahiya R (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA, 103(46): 17337–17342

DOI PMID

16
Liao J Y, Ma L M, Guo Y H, Zhang Y C, Zhou H, Shao P, Chen Y Q, Qu L H, Xu S (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE, 5(5): e10563

DOI PMID

17
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98

DOI PMID

18
Marcon E, Babak T, Chua G, Hughes T, Moens P B (2008). miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res, 16(2): 243–260

DOI PMID

19
Meister G, Landthaler M, Dorsett Y, Tuschl T (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 10(3): 544–550

DOI PMID

20
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 15(2): 185–197

DOI PMID

21
Noto T, Kurth H M, Kataoka K, Aronica L, DeSouza L V, Siu K W, Pearlman R E, Gorovsky M A, Mochizuki K (2010). The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell, 140(5): 692–703

DOI PMID

22
Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P (2008). Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res, 36(20): 6439–6449

DOI PMID

23
Okada C, Yamashita E, Lee S J, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957): 1275–1279

DOI PMID

24
Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 120(5): 613–622

DOI PMID

25
Pal-Bhadra M, Leibovitch B A, Gandhi S G, Rao M, Bhadra U, Birchler J A, Elgin S C (2004). Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 303(5658): 669–672

DOI PMID

26
Place R F, Li L C, Pookot D, Noonan E J, Dahiya R (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA, 105(5): 1608–1613

DOI PMID

27
Politz J C, Hogan E M, Pederson T (2009). MicroRNAs with a nucleolar location. RNA, 15(9): 1705–1715

DOI PMID

28
Politz J C, Zhang F, Pederson T (2006). MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA, 103(50): 18957–18962

DOI PMID

29
Robb G B, Brown K M, Khurana J, Rana T M (2005). Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol, 12(2): 133–137

DOI PMID

30
Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoneda Y (2006). Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res, 34(17): 4711–4721

DOI PMID

31
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837

DOI PMID

32
Wassenegger M, Heimes S, Riedel L, Sänger H L (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell, 76(3): 567–576

DOI PMID

33
Weinmann L, Höck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell, 136(3): 496–507

DOI PMID

34
Winter J, Jung S, Keller S, Gregory R I, Diederichs S (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3): 228–234

DOI PMID

Outlines

/