Received date: 30 Sep 2010
Accepted date: 02 Nov 2010
Published date: 01 Feb 2011
Copyright
p53 was discovered 30 years ago. Extensive studies have been done on p53 since then, which makes p53 one of the most extensively studied genes. p53 has long been recognized as a key tumor suppressor. Cell cycle arrest, apoptosis and senescence have been traditionally recognized as the main functions of p53 in tumor suppression. Recently, some novel functions of p53 have been identified, including the regulation of energy metabolism, antioxidant defense, and microRNA expression and maturation, which all contribute to the role of p53 in tumor suppression. Furthermore, the contribution of p53 to normal biologic processes (e.g. reproduction and aging) and some other aspects of diseases (e.g. neurodegenerative diseases) is only now being appreciated. Here we will review recent advances in the study of some new functions of p53.
Key words: p53; tumor suppressor; energy metabolism; oxidative stress; microRNAs; reproduction
Zhaohui FENG , Rui WU , Meihua LIN , Wenwei HU . Tumor suppressor p53: new functions of an old protein[J]. Frontiers in Biology, 2011 , 06(01) : 58 -68 . DOI: 10.1007/s11515-011-0970-8
1 |
Bae B I, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward S D, Moran T H, Montell C, Ross C A, Snyder S H, Sawa A (2005). p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron, 47(1): 29–41
|
2 |
Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233
|
3 |
Benhar M, Engelberg D, Levitzki A (2002). ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425
|
4 |
Bensaad K, Tsuruta A, Selak M A, Vidal M N, Nakano K, Bartrons R, Gottlieb E, Vousden K H (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1): 107–120
|
5 |
Bensaad K, Vousden K H (2007). p53: new roles in metabolism. Trends Cell Biol, 17(6): 286–291
|
6 |
Bond G L, Hu W, Bond E E, Robins H, Lutzker S G, Arva N C, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang S J, Strong L C, Lozano G, Levine A J (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell, 119(5): 591–602
|
7 |
Bond G L, Hu W, Levine A J (2005). MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets, 5(1): 3–8
|
8 |
Bourdon A, Minai L, Serre V, Jais J P, Sarzi E, Aubert S, Chrétien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rötig A (2007). Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet, 39(6): 776–780
|
9 |
Brooks C L, Gu W (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell, 21(3): 307–315
|
10 |
Budanov A V, Karin M (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134(3): 451–460
|
11 |
Budanov A V, Sablina A A, Feinstein E, Koonin E V, Chumakov P M (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science, 304(5670): 596–600
|
12 |
Calin G A, Croce C M (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6(11): 857–866
|
13 |
Chang T C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, Arking D E, Beer M A, Maitra A, Mendell J T (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5): 745–752
|
14 |
Choi J, Donehower L A (1999). p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci, 55(1): 38–47
|
15 |
Chu F F, Esworthy R S, Chu P G, Longmate J A, Huycke M M, Wilczynski S, Doroshow J H (2004). Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res, 64(3): 962–968
|
16 |
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison P R, Gasco M, Garrone O, Crook T, Ryan K M (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1): 121–134
|
17 |
Donehower L A, Harvey M, Slagle B L, McArthur M J, Montgomery C A Jr, Butel J S, Bradley A (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366): 215–221
|
18 |
Dröge W (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1): 47–95
|
19 |
Duan W, Zhu X, Ladenheim B, Yu Q S, Guo Z, Oyler J, Cutler R G, Cadet J L, Greig N H, Mattson M P (2002). p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol, 52(5): 597–606
|
20 |
el-Deiry W S, Kern S E, Pietenpol J A, Kinzler K W, Vogelstein B (1992). Definition of a consensus binding site for p53. Nat Genet, 1(1): 45–49
|
21 |
Elchuri S, Oberley T D, Qi W, Eisenstein R S, Jackson Roberts L, Van Remmen H, Epstein C J, Huang T T (2005). CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene, 24(3): 367–380
|
22 |
Feng Z (2010). p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol, 2(2): a001057
|
23 |
Feng Z, Hu W, de Stanchina E, Teresky A K, Jin S, Lowe S, Levine A J (2007a). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res, 67(7): 3043–3053
|
24 |
Feng Z, Hu W, Rajagopal G, Levine A J (2008). The tumor suppressor p53: cancer and aging. Cell Cycle, 7(7): 842–847
|
25 |
Feng Z, Hu W, Teresky A K, Hernando E, Cordon-Cardo C, Levine A J (2007b). Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA, 104(42): 16633–16638
|
26 |
Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S, Prives C, Levine A J (2006). p53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene, 25(1): 1–7
|
27 |
Feng Z, Levine A J (2010). The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol, 20(7): 427–434
|
28 |
Feng Z, Zhang H, Levine A J, Jin S (2005). The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA, 102(23): 8204–8209
|
29 |
Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin G A, Grazi G L, Croce C M, Tavolari S, Chieco P, Negrini M, Bolondi L (2009). MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res, 69(14): 5761–5767
|
30 |
Gambhir S S (2002). Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer, 2(9): 683–693
|
31 |
Garber K (2006). Energy deregulation: licensing tumors to grow. Science, 312(5777): 1158–1159
|
32 |
Halliwell B (2007). Oxidative stress and cancer: have we moved forward? Biochem J, 401(1): 1–11
|
33 |
Harris S L, Levine A J (2005). The p53 pathway: positive and negative feedback loops. Oncogene, 24(17): 2899–2908
|
34 |
He L, He X, Lim L P, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson A L, Linsley P S, Chen C, Lowe S W, Cleary M A, Hannon G J (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148): 1130–1134
|
35 |
Ho Y S, Xiong Y, Ma W, Spector A, Ho D S (2004). Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem, 279(31): 32804–32812
|
36 |
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009). Suppression of induced pluripotent stem cell generation by the p53-21 pathway. Nature, 460(7259): 1132–1135
|
37 |
Hsu P P, Sabatini D M (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5): 703–707
|
38 |
Hu W (2009). The role of p53 gene family in reproduction. Cold Spring Harb Perspect Biol, 1(6): a001073
|
39 |
Hu W, Chan C S, Wu R, Zhang C, Sun Y, Song J S, Tang L H, Levine A J, Feng Z (2010a). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell, 38(5): 689–699
|
40 |
Hu W, Feng Z, Atwal G S, Levine A J (2008). p53: a new player in reproduction. Cell Cycle, 7(7): 848–852
|
41 |
Hu W, Feng Z, Ma L, Wagner J, Rice J J, Stolovitzky G, Levine A J (2007a). A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res, 67(6): 2757–2765
|
42 |
Hu W, Feng Z, Teresky A K, Levine A J (2007b). p53 regulates maternal reproduction through LIF. Nature, 450(7170): 721–724
|
43 |
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010b). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA, 107(16): 7455–7460
|
44 |
Jacks T, Remington L, Williams B O, Schmitt E M, Halachmi S, Bronson R T, Weinberg R A (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol, 4(1): 1–7
|
45 |
Jones R G, Plas D R, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum M J, Thompson C B (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell, 18(3): 283–293
|
46 |
Kang H., Feng Z., Atwal G S, Sun Y, Murphy M E, Rebbeck T R, Rosenwaks Z, Levine A J, Hu W (2009). Single nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc Natl Acad Sci U S A, 106(24): 9761–9766
|
47 |
Kawauchi K, Araki K, Tobiume K, Tanaka N (2008). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol, 10(5): 611–618
|
48 |
Kay C, Jeyendran R S, Coulam C B (2006). p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod Biomed Online, 13(4): 492–496
|
49 |
Kent O A, Mendell J T (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene, 25(46): 6188–6196
|
50 |
Kondoh H, Lleonart M E, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005). Glycolytic enzymes can modulate cellular life span. Cancer Res, 65(1): 177–185
|
51 |
Kulawiec M, Ayyasamy V, Singh K K (2009). p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog, 8(1): 8
|
52 |
Lane D P, Cheok C F, Lain S (2010). p53-based cancer therapy. Cold Spring Harb Perspect Biol, 2(9): a001222
|
53 |
Le M T, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish H F, Lim B (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev, 23(7): 862–876
|
54 |
Levine A J, Hu W, Feng Z (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ, 13(6): 1027–1036
|
55 |
Levine A J, Oren M (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10): 749–758
|
56 |
Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027): 769–773
|
57 |
Liu G, Chen X (2002). The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene, 21(47): 7195–7204
|
58 |
Lu W, Ogasawara M A, Huang P (2007). Models of reactive oxygen species in cancer. Drug Discov Today Dis Models, 4(2): 67–73
|
59 |
Lyakhov I G, Krishnamachari A, Schneider T D (2008). Discovery of novel tumor suppressor p53 response elements using information theory. Nucleic Acids Res, 36(11): 3828–3833
|
60 |
Marión R M, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco M A (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259): 1149–1153
|
61 |
Martindale J L, Holbrook N J (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192(1): 1–15
|
62 |
Matoba S, Kang J G, Patino W D, Wragg A, Boehm M, Gavrilova O, Hurley P J, Bunz F, Hwang P M (2006). p53 regulates mitochondrial respiration. Science, 312(5780): 1650–1653
|
63 |
Mendrysa S M, O’Leary K A, McElwee M K, Michalowski J, Eisenman R N, Powell D A, Perry M E (2006). Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev, 20(1): 16–21
|
64 |
Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med, 15(9): 1082–1087
|
65 |
Murphy M E (2006). Polymorphic variants in the p53 pathway. Cell Death Differ, 13(6): 916–920
|
66 |
Neumann C A, Krause D S, Carman C V, Das S, Dubey D P, Abraham J L, Bronson R T, Fujiwara Y, Orkin S H, Van Etten R A (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature, 424(6948): 561–565
|
67 |
Nicholls D (2002). Mitochondrial bioenergetics, aging, and aging-related disease. Sci SAGE KE, 2002(31): pe12
|
68 |
Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S (1996). p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med, 2(5): 577–580
|
69 |
Olivier M, Hussain S P, Caron de Fromentel C, Hainaut P, Harris C C (2004). TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ, (157): 247–270
|
70 |
Park S Y, Lee J H, Ha M, Nam J W, Kim V N (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol, 16(1): 23–29
|
71 |
Pillai R S, Bhattacharyya S N, Filipowicz W (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol, 17(3): 118–126
|
72 |
Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 26(5): 731–743
|
73 |
Rivera A, Maxwell S A (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem, 280(32): 29346–29354
|
74 |
Sablina A A, Budanov A V, Ilyinskaya G V, Agapova L S, Kravchenko J E, Chumakov P M (2005). The antioxidant function of the p53 tumor suppressor. Nat Med, 11(12): 1306–1313
|
75 |
Sah V P, Attardi L D, Mulligan G J, Williams B O, Bronson R T, Jacks T (1995). A subset of p53-deficient embryos exhibit exencephaly. Nat Genet, 10(2): 175–180
|
76 |
Scheffner M, Werness B A, Huibregtse J M, Levine A J, Howley P M (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63(6): 1129–1136
|
77 |
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004). The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res, 64(7): 2627–2633
|
78 |
Strong L C (2003). General keynote: Hereditary cancer: lessons from Li-Fraumeni sydrome. Gyuecol Oncol, 88(part 2): S4–S7j discussion S11–S13<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>
|
78 |
Suzuki H I, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009). Modulation of microRNA processing by p53. Nature, 460(7254): 529–533
|
79 |
Suzuki S, Tanaka T, Poyurovsky M V, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010). Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA, 107(16): 7461–7466
|
80 |
Tan M, Li S, Swaroop M, Guan K, Oberley L W, Sun Y (1999). Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem, 274(17): 12061–12066
|
81 |
Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA, 104(39): 15472–15477
|
82 |
Teodoro J G, Evans S K, Green M R (2007). Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med, 85(11): 1175–1186
|
83 |
Teodoro J G, Parker A E, Zhu X, Green M R (2006). p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science, 313(5789): 968–971
|
84 |
Tyner S D, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower L A (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature, 415(6867): 45–53
|
85 |
Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe S R, Alderson N L, Baynes J W, Epstein C J, Huang T T, Nelson J, Strong R, Richardson A (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics, 16(1): 29–37
|
86 |
Vassilev L T (2007). MDM2 inhibitors for cancer therapy. Trends Mol Med, 13(1): 23–31
|
87 |
Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E A (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303(5659): 844–848
|
88 |
Ventura A, Kirsch D G, McLaughlin M E, Tuveson D A, Grimm J, Lintault L, Newman J, Reczek E E, Weissleder R, Jacks T (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128): 661–665
|
89 |
Vousden K H, Prives C (2009). Blinded by the light: The growing complexity of p53. Cell, 137(3): 413–431
|
90 |
Wade M, Wahl G M (2009). Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res, 7(1): 1–11
|
91 |
Warburg O (1956). On the origin of cancer cells. Science, 123(3191): 309–314
|
92 |
Xue W, Zender L, Miething C, Dickins R A, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe S W (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128): 656–660
|
93 |
Yamakuchi M, Ferlito M, Lowenstein C J (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA, 105(36): 13421–13426
|
94 |
Yee K S, Wilkinson S, James J, Ryan K M, Vousden K H (2009). PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ, 16(8): 1135–1145
|
95 |
Yoon K A, Nakamura Y, Arakawa H (2004). Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet, 49(3): 134–140
|
96 |
Zhou B P, Liao Y, Xia W, Zou Y, Spohn B, Hung M C (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol, 3(11): 973–982
|
/
〈 | 〉 |