Tumor suppressor p53: new functions of an old protein

Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU

PDF(234 KB)
PDF(234 KB)
Front. Biol. ›› 2011, Vol. 06 ›› Issue (01) : 58-68. DOI: 10.1007/s11515-011-0970-8
REVIEW
REVIEW

Tumor suppressor p53: new functions of an old protein

Author information +
History +

Abstract

p53 was discovered 30 years ago. Extensive studies have been done on p53 since then, which makes p53 one of the most extensively studied genes. p53 has long been recognized as a key tumor suppressor. Cell cycle arrest, apoptosis and senescence have been traditionally recognized as the main functions of p53 in tumor suppression. Recently, some novel functions of p53 have been identified, including the regulation of energy metabolism, antioxidant defense, and microRNA expression and maturation, which all contribute to the role of p53 in tumor suppression. Furthermore, the contribution of p53 to normal biologic processes (e.g. reproduction and aging) and some other aspects of diseases (e.g. neurodegenerative diseases) is only now being appreciated. Here we will review recent advances in the study of some new functions of p53.

Keywords

p53 / tumor suppressor / energy metabolism / oxidative stress / microRNAs / reproduction

Cite this article

Download citation ▾
Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU. Tumor suppressor p53: new functions of an old protein. Front Biol, 2011, 06(01): 58‒68 https://doi.org/10.1007/s11515-011-0970-8

References

[1]
Bae B I, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward S D, Moran T H, Montell C, Ross C A, Snyder S H, Sawa A (2005). p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron, 47(1): 29–41
CrossRef Pubmed Google scholar
[2]
Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233
CrossRef Pubmed Google scholar
[3]
Benhar M, Engelberg D, Levitzki A (2002). ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425
CrossRef Pubmed Google scholar
[4]
Bensaad K, Tsuruta A, Selak M A, Vidal M N, Nakano K, Bartrons R, Gottlieb E, Vousden K H (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1): 107–120
CrossRef Pubmed Google scholar
[5]
Bensaad K, Vousden K H (2007). p53: new roles in metabolism. Trends Cell Biol, 17(6): 286–291
CrossRef Pubmed Google scholar
[6]
Bond G L, Hu W, Bond E E, Robins H, Lutzker S G, Arva N C, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang S J, Strong L C, Lozano G, Levine A J (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell, 119(5): 591–602
CrossRef Pubmed Google scholar
[7]
Bond G L, Hu W, Levine A J (2005). MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets, 5(1): 3–8
CrossRef Pubmed Google scholar
[8]
Bourdon A, Minai L, Serre V, Jais J P, Sarzi E, Aubert S, Chrétien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rötig A (2007). Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet, 39(6): 776–780
CrossRef Pubmed Google scholar
[9]
Brooks C L, Gu W (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell, 21(3): 307–315
CrossRef Pubmed Google scholar
[10]
Budanov A V, Karin M (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134(3): 451–460
CrossRef Pubmed Google scholar
[11]
Budanov A V, Sablina A A, Feinstein E, Koonin E V, Chumakov P M (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science, 304(5670): 596–600
CrossRef Pubmed Google scholar
[12]
Calin G A, Croce C M (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6(11): 857–866
CrossRef Pubmed Google scholar
[13]
Chang T C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, Arking D E, Beer M A, Maitra A, Mendell J T (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5): 745–752
CrossRef Pubmed Google scholar
[14]
Choi J, Donehower L A (1999). p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci, 55(1): 38–47
CrossRef Pubmed Google scholar
[15]
Chu F F, Esworthy R S, Chu P G, Longmate J A, Huycke M M, Wilczynski S, Doroshow J H (2004). Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res, 64(3): 962–968
CrossRef Pubmed Google scholar
[16]
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison P R, Gasco M, Garrone O, Crook T, Ryan K M (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1): 121–134
CrossRef Pubmed Google scholar
[17]
Donehower L A, Harvey M, Slagle B L, McArthur M J, Montgomery C A Jr, Butel J S, Bradley A (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366): 215–221
CrossRef Pubmed Google scholar
[18]
Dröge W (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1): 47–95
Pubmed
[19]
Duan W, Zhu X, Ladenheim B, Yu Q S, Guo Z, Oyler J, Cutler R G, Cadet J L, Greig N H, Mattson M P (2002). p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol, 52(5): 597–606
CrossRef Pubmed Google scholar
[20]
el-Deiry W S, Kern S E, Pietenpol J A, Kinzler K W, Vogelstein B (1992). Definition of a consensus binding site for p53. Nat Genet, 1(1): 45–49
CrossRef Pubmed Google scholar
[21]
Elchuri S, Oberley T D, Qi W, Eisenstein R S, Jackson Roberts L, Van Remmen H, Epstein C J, Huang T T (2005). CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene, 24(3): 367–380
CrossRef Pubmed Google scholar
[22]
Feng Z (2010). p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol, 2(2): a001057
CrossRef Pubmed Google scholar
[23]
Feng Z, Hu W, de Stanchina E, Teresky A K, Jin S, Lowe S, Levine A J (2007a). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res, 67(7): 3043–3053
CrossRef Pubmed Google scholar
[24]
Feng Z, Hu W, Rajagopal G, Levine A J (2008). The tumor suppressor p53: cancer and aging. Cell Cycle, 7(7): 842–847
CrossRef Pubmed Google scholar
[25]
Feng Z, Hu W, Teresky A K, Hernando E, Cordon-Cardo C, Levine A J (2007b). Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA, 104(42): 16633–16638
CrossRef Pubmed Google scholar
[26]
Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S, Prives C, Levine A J (2006). p53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene, 25(1): 1–7
Pubmed
[27]
Feng Z, Levine A J (2010). The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol, 20(7): 427–434
CrossRef Pubmed Google scholar
[28]
Feng Z, Zhang H, Levine A J, Jin S (2005). The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA, 102(23): 8204–8209
CrossRef Pubmed Google scholar
[29]
Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin G A, Grazi G L, Croce C M, Tavolari S, Chieco P, Negrini M, Bolondi L (2009). MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res, 69(14): 5761–5767
CrossRef Pubmed Google scholar
[30]
Gambhir S S (2002). Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer, 2(9): 683–693
CrossRef Pubmed Google scholar
[31]
Garber K (2006). Energy deregulation: licensing tumors to grow. Science, 312(5777): 1158–1159
CrossRef Pubmed Google scholar
[32]
Halliwell B (2007). Oxidative stress and cancer: have we moved forward? Biochem J, 401(1): 1–11
CrossRef Pubmed Google scholar
[33]
Harris S L, Levine A J (2005). The p53 pathway: positive and negative feedback loops. Oncogene, 24(17): 2899–2908
CrossRef Pubmed Google scholar
[34]
He L, He X, Lim L P, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson A L, Linsley P S, Chen C, Lowe S W, Cleary M A, Hannon G J (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148): 1130–1134
CrossRef Pubmed Google scholar
[35]
Ho Y S, Xiong Y, Ma W, Spector A, Ho D S (2004). Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem, 279(31): 32804–32812
CrossRef Pubmed Google scholar
[36]
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009). Suppression of induced pluripotent stem cell generation by the p53-21 pathway. Nature, 460(7259): 1132–1135
CrossRef Pubmed Google scholar
[37]
Hsu P P, Sabatini D M (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5): 703–707
CrossRef Pubmed Google scholar
[38]
Hu W (2009). The role of p53 gene family in reproduction. Cold Spring Harb Perspect Biol, 1(6): a001073
CrossRef Pubmed Google scholar
[39]
Hu W, Chan C S, Wu R, Zhang C, Sun Y, Song J S, Tang L H, Levine A J, Feng Z (2010a). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell, 38(5): 689–699
CrossRef Pubmed Google scholar
[40]
Hu W, Feng Z, Atwal G S, Levine A J (2008). p53: a new player in reproduction. Cell Cycle, 7(7): 848–852
CrossRef Pubmed Google scholar
[41]
Hu W, Feng Z, Ma L, Wagner J, Rice J J, Stolovitzky G, Levine A J (2007a). A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res, 67(6): 2757–2765
CrossRef Pubmed Google scholar
[42]
Hu W, Feng Z, Teresky A K, Levine A J (2007b). p53 regulates maternal reproduction through LIF. Nature, 450(7170): 721–724
CrossRef Pubmed Google scholar
[43]
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010b). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA, 107(16): 7455–7460
CrossRef Pubmed Google scholar
[44]
Jacks T, Remington L, Williams B O, Schmitt E M, Halachmi S, Bronson R T, Weinberg R A (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol, 4(1): 1–7
CrossRef Pubmed Google scholar
[45]
Jones R G, Plas D R, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum M J, Thompson C B (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell, 18(3): 283–293
CrossRef Pubmed Google scholar
[46]
Kang H., Feng Z., Atwal G S, Sun Y, Murphy M E, Rebbeck T R, Rosenwaks Z, Levine A J, Hu W (2009). Single nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc Natl Acad Sci U S A, 106(24): 9761–9766
CrossRef Google scholar
[47]
Kawauchi K, Araki K, Tobiume K, Tanaka N (2008). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol, 10(5): 611–618
CrossRef Pubmed Google scholar
[48]
Kay C, Jeyendran R S, Coulam C B (2006). p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod Biomed Online, 13(4): 492–496
CrossRef Pubmed Google scholar
[49]
Kent O A, Mendell J T (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene, 25(46): 6188–6196
CrossRef Pubmed Google scholar
[50]
Kondoh H, Lleonart M E, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005). Glycolytic enzymes can modulate cellular life span. Cancer Res, 65(1): 177–185
Pubmed
[51]
Kulawiec M, Ayyasamy V, Singh K K (2009). p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog, 8(1): 8
CrossRef Pubmed Google scholar
[52]
Lane D P, Cheok C F, Lain S (2010). p53-based cancer therapy. Cold Spring Harb Perspect Biol, 2(9): a001222
CrossRef Pubmed Google scholar
[53]
Le M T, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish H F, Lim B (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev, 23(7): 862–876
CrossRef Pubmed Google scholar
[54]
Levine A J, Hu W, Feng Z (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ, 13(6): 1027–1036
CrossRef Pubmed Google scholar
[55]
Levine A J, Oren M (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10): 749–758
CrossRef Pubmed Google scholar
[56]
Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027): 769–773
CrossRef Pubmed Google scholar
[57]
Liu G, Chen X (2002). The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene, 21(47): 7195–7204
CrossRef Pubmed Google scholar
[58]
Lu W, Ogasawara M A, Huang P (2007). Models of reactive oxygen species in cancer. Drug Discov Today Dis Models, 4(2): 67–73
CrossRef Pubmed Google scholar
[59]
Lyakhov I G, Krishnamachari A, Schneider T D (2008). Discovery of novel tumor suppressor p53 response elements using information theory. Nucleic Acids Res, 36(11): 3828–3833
CrossRef Pubmed Google scholar
[60]
Marión R M, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco M A (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259): 1149–1153
CrossRef Pubmed Google scholar
[61]
Martindale J L, Holbrook N J (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192(1): 1–15
CrossRef Pubmed Google scholar
[62]
Matoba S, Kang J G, Patino W D, Wragg A, Boehm M, Gavrilova O, Hurley P J, Bunz F, Hwang P M (2006). p53 regulates mitochondrial respiration. Science, 312(5780): 1650–1653
CrossRef Pubmed Google scholar
[63]
Mendrysa S M, O’Leary K A, McElwee M K, Michalowski J, Eisenman R N, Powell D A, Perry M E (2006). Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev, 20(1): 16–21
CrossRef Pubmed Google scholar
[64]
Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med, 15(9): 1082–1087
CrossRef Pubmed Google scholar
[65]
Murphy M E (2006). Polymorphic variants in the p53 pathway. Cell Death Differ, 13(6): 916–920
CrossRef Pubmed Google scholar
[66]
Neumann C A, Krause D S, Carman C V, Das S, Dubey D P, Abraham J L, Bronson R T, Fujiwara Y, Orkin S H, Van Etten R A (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature, 424(6948): 561–565
CrossRef Pubmed Google scholar
[67]
Nicholls D (2002). Mitochondrial bioenergetics, aging, and aging-related disease. Sci SAGE KE, 2002(31): pe12
CrossRef Pubmed Google scholar
[68]
Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S (1996). p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med, 2(5): 577–580
CrossRef Pubmed Google scholar
[69]
Olivier M, Hussain S P, Caron de Fromentel C, Hainaut P, Harris C C (2004). TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ, (157): 247–270
Pubmed
[70]
Park S Y, Lee J H, Ha M, Nam J W, Kim V N (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol, 16(1): 23–29
CrossRef Pubmed Google scholar
[71]
Pillai R S, Bhattacharyya S N, Filipowicz W (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol, 17(3): 118–126
CrossRef Pubmed Google scholar
[72]
Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 26(5): 731–743
CrossRef Pubmed Google scholar
[73]
Rivera A, Maxwell S A (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem, 280(32): 29346–29354
CrossRef Pubmed Google scholar
[74]
Sablina A A, Budanov A V, Ilyinskaya G V, Agapova L S, Kravchenko J E, Chumakov P M (2005). The antioxidant function of the p53 tumor suppressor. Nat Med, 11(12): 1306–1313
CrossRef Pubmed Google scholar
[75]
Sah V P, Attardi L D, Mulligan G J, Williams B O, Bronson R T, Jacks T (1995). A subset of p53-deficient embryos exhibit exencephaly. Nat Genet, 10(2): 175–180
CrossRef Pubmed Google scholar
[76]
Scheffner M, Werness B A, Huibregtse J M, Levine A J, Howley P M (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63(6): 1129–1136
CrossRef Pubmed Google scholar
[77]
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004). The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res, 64(7): 2627–2633
CrossRef Pubmed Google scholar
[78]
Strong L C (2003). General keynote: Hereditary cancer: lessons from Li-Fraumeni sydrome. Gyuecol Oncol, 88(part 2): S4–S7j discussion S11–S13<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>
[78]
Suzuki H I, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009). Modulation of microRNA processing by p53. Nature, 460(7254): 529–533
CrossRef Pubmed Google scholar
[79]
Suzuki S, Tanaka T, Poyurovsky M V, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010). Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA, 107(16): 7461–7466
CrossRef Pubmed Google scholar
[80]
Tan M, Li S, Swaroop M, Guan K, Oberley L W, Sun Y (1999). Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem, 274(17): 12061–12066
CrossRef Pubmed Google scholar
[81]
Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA, 104(39): 15472–15477
CrossRef Pubmed Google scholar
[82]
Teodoro J G, Evans S K, Green M R (2007). Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med, 85(11): 1175–1186
CrossRef Pubmed Google scholar
[83]
Teodoro J G, Parker A E, Zhu X, Green M R (2006). p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science, 313(5789): 968–971
CrossRef Pubmed Google scholar
[84]
Tyner S D, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower L A (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature, 415(6867): 45–53
CrossRef Pubmed Google scholar
[85]
Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe S R, Alderson N L, Baynes J W, Epstein C J, Huang T T, Nelson J, Strong R, Richardson A (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics, 16(1): 29–37
CrossRef Pubmed Google scholar
[86]
Vassilev L T (2007). MDM2 inhibitors for cancer therapy. Trends Mol Med, 13(1): 23–31
CrossRef Pubmed Google scholar
[87]
Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E A (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303(5659): 844–848
CrossRef Pubmed Google scholar
[88]
Ventura A, Kirsch D G, McLaughlin M E, Tuveson D A, Grimm J, Lintault L, Newman J, Reczek E E, Weissleder R, Jacks T (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128): 661–665
CrossRef Pubmed Google scholar
[89]
Vousden K H, Prives C (2009). Blinded by the light: The growing complexity of p53. Cell, 137(3): 413–431
CrossRef Pubmed Google scholar
[90]
Wade M, Wahl G M (2009). Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res, 7(1): 1–11
CrossRef Pubmed Google scholar
[91]
Warburg O (1956). On the origin of cancer cells. Science, 123(3191): 309–314
CrossRef Pubmed Google scholar
[92]
Xue W, Zender L, Miething C, Dickins R A, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe S W (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128): 656–660
CrossRef Pubmed Google scholar
[93]
Yamakuchi M, Ferlito M, Lowenstein C J (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA, 105(36): 13421–13426
CrossRef Pubmed Google scholar
[94]
Yee K S, Wilkinson S, James J, Ryan K M, Vousden K H (2009). PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ, 16(8): 1135–1145
CrossRef Pubmed Google scholar
[95]
Yoon K A, Nakamura Y, Arakawa H (2004). Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet, 49(3): 134–140
CrossRef Pubmed Google scholar
[96]
Zhou B P, Liao Y, Xia W, Zou Y, Spohn B, Hung M C (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol, 3(11): 973–982
CrossRef Pubmed Google scholar

Acknowledgements

Z. Feng is supported by the grant from National Institutes of Health (1R01CA143204-01) and New Jersey Commission on Cancer Research (09-1970-CCR-EO). W. Hu is supported by the grant from National Institutes of Health (1P30CA147892-01).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/