REVIEW

Fate determination of fetal Leydig cells

  • Qing WEN 1,2 ,
  • Yixun LIU , 1 ,
  • Fei GAO , 1
Expand
  • 1. State Key Laboratory of Reproduction Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 08 Nov 2010

Accepted date: 25 Nov 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Leydig cell (LC) is one of the most important somatic cell types in testis, which localized in the interstitium between seminiferous tubules. The major function of Leydig cells is to produce steroid hormone, androgens. LC differentiation exhibits a biphasic pattern in rodent testes, which are divided into two different temporal mature populations, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). FLCs are transiently present in fetal testes and undergo involution or degeneration after birth. FLCs are completely devoid and replaced by ALCs in adult testes. Comparing to ALCs, FLCs display unique morphology, ultrastructure and functions. The origin of FLCs has been debated for many years, but it is still a mystery. Many factors have been reported regulating the specification, proliferation and differentiation of FLCs. FLCs degenerate in a few weeks postnatally, however, the underlying mechanism is still unknown. In this review, we will focus on the fate determination of FLCs, and summarize the resent progress on the morphology, ultrastructure, function, origin and involution of FLCs.

Cite this article

Qing WEN , Yixun LIU , Fei GAO . Fate determination of fetal Leydig cells[J]. Frontiers in Biology, 2011 , 06(01) : 12 -18 . DOI: 10.1007/s11515-011-1100-3

Acknowledgments

This study was supported by the National Basic Research Program of China (“973” project) (No. 2007CB947502), the CAS Innovation Project (No. KSCX2-YW-R-081) and the National Nature Science Foundation of China (Grant No. 31071271).
1
Angelova P, Davidoff M, Baleva K, Staykova M (1991). Substance P- and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem, 91(2): 131–139

PMID

2
Baarends W M, Hoogerbrugge J W, Post M, Visser J A, De Rooij D G, Parvinen M, Themmen A P, Grootegoed J A (1995). Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression during postnatal testis development and in the adult testis of the rat. Endocrinology, 136(12): 5614–5622

DOI PMID

3
Baarends W M, van Helmond M J, Post M, van der Schoot P J, Hoogerbrugge J W, de Winter J P, Uilenbroek J T, Karels B, Wilming L G, Meijers J H, (1994). A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the müllerian duct. Development, 120(1): 189–197

PMID

4
Baillie A H (1964). FURTHER OBSERVATIONS ON THE GROWTH AND HISTOCHEMISTRY OF LEYDIG TISSUE IN THE POSTNATAL PREPUBERTAL MOUSE TESTIS. J Anat, 98: 403–418

PMID

5
Barsoum I B, Bingham N C, Parker K L, Jorgensen J S, Yao H H (2009). Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol, 329(1): 96–103

DOI PMID

6
Barsoum I B, Yao H H (2010). Fetal Leydig cells: progenitor cell maintenance and differentiation. J Androl, 31(1): 11–15

DOI PMID

7
Behringer R R, Cate R L, Froelick G J, Palmiter R D, Brinster R L (1990). Abnormal sexual development in transgenic mice chronically expressing müllerian inhibiting substance. Nature, 345(6271): 167–170

DOI PMID

8
Behringer R R, Finegold M J, Cate R L (1994). Müllerian-inhibiting substance function during mammalian sexual development. Cell, 79(3): 415–425

DOI PMID

9
Betsholtz C, Raines E W (1997). Platelet-derived growth factor: a key regulator of connective tissue cells in embryogenesis and pathogenesis. Kidney Int, 51(5): 1361–1369

DOI PMID

10
Bitgood M J, McMahon A P (1995). Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol, 172(1): 126–138

DOI PMID

11
Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, Pekna M, Hellström M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Törnell J, Heath J K, Betsholtz C (1996). PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell, 85(6): 863–873

DOI PMID

12
Brennan J, Capel B (2004). One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet, 5(7): 509–521

DOI PMID

13
Brennan J, Tilmann C, Capel B (2003). Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev, 17(6): 800–810

DOI PMID

14
Buehr M, Gu S, McLaren A (1993). Mesonephric contribution to testis differentiation in the fetal mouse. Development, 117(1): 273–281

PMID

15
Chiwakata C, Brackmann B, Hunt N, Davidoff M, Schulze W, Ivell R (1991). Tachykinin (substance-P) gene expression in Leydig cells of the human and mouse testis. Endocrinology, 128(5): 2441–2448

DOI PMID

16
Cui S, Ross A, Stallings N, Parker K L, Capel B, Quaggin S E (2004). Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development, 131(16): 4095–4105

DOI PMID

17
Davidoff M S, Middendorff R, Müller D, Holstein A F, Müller D (2009). Fetal and Adult Leydig Cells Are of Common Orig. In The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes. Berlin: Springer, pp. 89–103

18
De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm J S, Schroeter E H, Schrijvers V, Wolfe M S, Ray W J, Goate A, Kopan R (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398(6727): 518–522

DOI PMID

19
di Clemente N, Wilson C, Faure E, Boussin L, Carmillo P, Tizard R, Picard J Y, Vigier B, Josso N, Cate R (1994). Cloning, expression, and alternative splicing of the receptor for anti-Müllerian hormone. Mol Endocrinol, 8(8): 1006–1020

DOI PMID

20
Faria M J S, Simões Z L, Lunardi L O, Hartfelder K (2003). Apoptosis process in mouse Leydig cells during postnatal development. Microsc Microanal, 9(1): 68–73

DOI PMID

21
Gondos B, Morrison K P, Renston R H (1977). Leydig cell differentiation in the prepubertal rabbit testis. Biol Reprod, 17(5): 745–748

DOI PMID

22
Habert R, Lejeune H, Saez J M (2001). Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol, 179(1-2): 47–74

DOI PMID

23
Haider S G (2004). Cell biology of Leydig cells in the testis. Int Rev Cytol, 233: 181–241

DOI PMID

24
Haider S G, Servos G, Tran N (2007). Structural and Histological Analysis of Leydig Cell Steroidogenic Function. In Payne A H, Hardy M P, eds. The Leydig Cell in Health and Disease. New Jersey: Humana Press, pp. 33–45

25
Hatano O, Takakusu A, Nomura M, Morohashi K (1996). Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells, 1(7): 663–671

DOI PMID

26
Huppert S S, Le A, Schroeter E H, Mumm J S, Saxena M T, Milner L A, Kopan R (2000). Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature, 405(6789): 966–970

DOI PMID

27
Kageyama R, Ohtsuka T, Kobayashi T (2007). The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development, 134(7): 1243–1251

DOI PMID

28
Karl J, Capel B (1998). Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol, 203(2): 323–333

DOI PMID

29
Karlsson L, Lindahl P, Heath J K, Betsholtz C (2000). Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development, 127(16): 3457–3466

PMID

30
Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns W B, Yokoyama M, Morohashi K (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet, 32(3): 359–369

DOI PMID

31
Lai E C (2004). Notch signaling: control of cell communication and cell fate. Development, 131(5): 965–973

DOI PMID

32
Lee M M, Donahoe P K (1993). Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocr Rev, 14(2): 152–164

PMID

33
Lee M M, Seah C C, Masiakos P T, Sottas C M, Preffer F I, Donahoe P K, Maclaughlin D T, Hardy M P (1999). Müllerian-inhibiting substance type II receptor expression and function in purified rat Leydig cells. Endocrinology, 140(6): 2819–2827

DOI PMID

34
Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998). Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development, 125(17): 3313–3322

PMID

35
Lording D W, De Kretser D M (1972). Comparative ultrastructural and histochemical studies of the interstitial cells of the rat testis during fetal and postnatal development. J Reprod Fertil, 29(2): 261–269

DOI PMID

36
Luo X, Ikeda Y, Parker K L (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 77(4): 481–490

DOI PMID

37
Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997). Male-specific cell migration into the developing gonad. Curr Biol, 7(12): 958–968

DOI PMID

38
Mayerhofer A, Lahr G, Seidl K, Eusterschulte B, Christoph A, Gratzl M (1996). The neural cell adhesion molecule (NCAM) provides clues to the development of testicular Leydig cells. J Androl, 17(3): 223–230

PMID

39
Mendis-Handagama S M, Ariyaratne H B (2001). Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod, 65(3): 660–671

DOI PMID

40
Merchant-Larios H, Moreno-Mendoza N (1998). Mesonephric stromal cells differentiate into Leydig cells in the mouse fetal testis. Exp Cell Res, 244(1): 230–238

DOI PMID

41
Mishina Y, Rey R, Finegold M J, Matzuk M M, Josso N, Cate R L, Behringer R R (1996). Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev, 10(20): 2577–2587

DOI PMID

42
Niemi M, Kormano M (1964). CELL RENEWAL IN THE INTERSTITIAL TISSUE OF POSTNATAL PREPUBERAL RAT TESTIS. Endocrinology, 74(6): 996–998

DOI PMID

43
Nishino K, Yamanouchi K, Naito K, Tojo H (2001). Characterization of mesonephric cells that migrate into the XY gonad during testis differentiation. Exp Cell Res, 267(2): 225–232

DOI PMID

44
Racine C, Rey R, Forest M G, Louis F, Ferré A, Huhtaniemi I, Josso N, di Clemente N (1998). Receptors for anti-müllerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Proc Natl Acad Sci USA, 95(2): 594–599

DOI PMID

45
Roosen-Runge E C, Anderson D (1959). The development of the interstitial cells in the testis of the albino rat. Acta Anat (Basel), 37(1-2): 125–137

DOI PMID

46
Sadovsky Y, Crawford P A, Woodson K G, Polish J A, Clements M A, Tourtellotte L M, Simburger K, Milbrandt J (1995). Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A, 92(24): 10939–10943

DOI PMID

47
Schmahl J, Eicher E M, Washburn L L, Capel B (2000). Sry induces cell proliferation in the mouse gonad. Development, 127(1): 65–73

PMID

48
Schroeter E H, Kisslinger J A, Kopan R (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393(6683): 382–386

DOI PMID

49
Soriano P (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev, 8(16): 1888–1896

DOI PMID

50
Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008). Notch signaling maintains Leydig progenitor cells in the mouse testis. Development, 135(22): 3745–3753

DOI PMID

51
Teixeira J, He W W, Shah P C, Morikawa N, Lee M M, Catlin E A, Hudson P L, Wing J, Maclaughlin D T, Donahoe P K (1996). Developmental expression of a candidate müllerian inhibiting substance type II receptor. Endocrinology, 137(1): 160–165

DOI PMID

52
Tilmann C, Capel B (1999). Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development, 126(13): 2883–2890

PMID

53
Yao H H, Capel B (2002). Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev Biol, 246(2): 356–365

DOI PMID

54
Yao H H, Whoriskey W, Capel B (2002). Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev, 16(11): 1433–1440

DOI PMID

55
Yao H H C, Barsoum I (2007). Fetal Leydig Cells. In: A HPayne, Hardy M P, eds. The Leydig Cell in Health and Disease. New Jersey: Humana Press, pp. 47–54

Outlines

/