Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS
Received date: 11 Sep 2017
Accepted date: 28 Nov 2017
Published date: 10 Jan 2018
Copyright
BACKGROUND: Plant secondary metabolites act as defence molecules to protect plants from biotic and abiotic stresses. In particular, C-glycosylated flavonoids are more stable and reactive than their O-glycosylated counterparts. Therefore, vitexin (apigenin 8-C glucoside) present in Ficus deltoidea is well-known for its antioxidant, anti-inflammatory, and antidiabetic properties.
METHODS: Phenol based extraction was used to extract proteins (0.05% yield) with less plant pigments. This can be seen from clear protein bands in gel electrophoresis. In-gel trypsin digestion was subsequently carried out and analysed for the presence of peptides by LC-MS/MS.
RESULTS: Thirteen intact proteins are identified on a 12% polyacrylamide gel. The mass spectra matching was found to have 229 proteins, and 11.4% of these were involved in secondary metabolism. Proteins closely related to vitexin biosynthesis are listed and their functions are explained mechanistically. Vitexin synthesis is predicted to involve plant polyketide chalcone synthase, isomerization by chalcone isomerase, oxidation by cytochrome P450 to convert flavanone to flavone, and transfer of sugar moiety by C-glycosyltransferase, followed by dehydration to produce flavone-8-C-glucosides.
CONCLUSIONS: Phenol based extraction, followed by gel electrophoresis and LC-MS/MS could identify proteome explaining vitexin biosynthesis in F. deltoidea. Many transferases including β-1,3-galactosyltransferase 2 and glycosyl hydrolase family 10 protein were detected in this study. This explains the importance of transferase family proteins in C-glycosylated apigenin biosynthesis in medicinal plant.
Key words: C-glycosylation; vitexin; apigenin 8-C glucoside; proteins; peptides; LC-MS/MS
Farah Izana Abdullah , Lee Suan Chua , Zaidah Rahmat . Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS[J]. Frontiers in Biology, 2017 , 12(6) : 448 -458 . DOI: 10.1007/s11515-017-1472-0
1 |
Adam Z, Khamis S, Ismail A , Hamid M (2012). Ficus deltoidea: A potential alternative medicine fordiabetes mellitus. Evid Based ComplementAlternat Med, 2012: 632763
|
2 |
Afrin S, Huang J J, Luo Z Y (2015). JA-mediated transcriptionalregulation of secondary metabolism in medicinal plants. Sci Bull, 60(12): 1062–1072
|
3 |
Akashi T, Aoki T, Ayabe S (2005). Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvementof carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol, 137(3): 882–891
|
4 |
Akashi T, Fukuchi-Mizutani M, Aoki T , Ueyama Y , Yonekura-Sakakibara K , Tanaka Y , Kusumi T , Ayabe S (1999). Molecular cloning and biochemical characterization of a novel cytochromeP450, flavone synthase II, that catalyzes direct conversion of flavanonesto flavones. Plant Cell Physiol, 40(11): 1182–1186
|
5 |
Akey D L, Razelun J R, Tehranisa J, Sherman D H , Gerwick W H , Smith J L (2010). Crystal structures of dehydratase domains from the curacin polyketide biosyntheticpathway. Structure, 18(1): 94–105
|
6 |
Alejandro S, Lee Y, Tohge T , Sudre D , Osorio S , Park J, Bovet L, Lee Y , Geldner N , Fernie A R , Martinoia E (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol, 22(13): 1207–1212
|
7 |
Austin M B, Noel J P (2003). The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep, 20(1): 79–110
|
8 |
Azemin A, Dharmaraj S, Hamdan M R , Mat N, Ismail Z, Khamsah S M (2014). Discriminating Ficus deltoidea var. bornensis from Different Localities by HPTLC and FTIR Fingerprinting. J Appl Pharm Sci, 4: 69–75
|
9 |
Bak S, Beisson F, Bishop G , Hamberger B , Höfer R , Paquette S (2011). Cytochromes P450. Arab B, e0144
|
10 |
Bednar R A, Hadcock J R (1988). Purification and characterization of chalcone isomerasefrom soybeans. J Biol Chem, 263(20): 9582–9588
|
11 |
Bernhoft A, Siem H, Bjertness E , Meltzer M , Flaten T , Holmsen E (2010). Bioactive compounds in plants–benefits and risks for man and animals. in Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters,Novus forlag, Oslo
|
12 |
Bradford M M (1976). A rapid and sensitive method forthe quantitation of microgram quantities of protein utilizing theprinciple of protein-dye binding. Anal Biochem, 72(1-2): 248–254
|
13 |
Brazier-Hicks M, Edwards R (2013). Metabolic engineering of the flavone-C-glycoside pathwayusing polyprotein technology. Metab Eng, 16: 11–20
|
14 |
Brazier-Hicks M, Evans K M, Cunningham O D, Hodgson D R W, Steel P G, Edwards R (2008). Catabolism of glutathioneconjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem, 283(30): 21102–21112
|
15 |
Brazier-Hicks M, Evans K M, Gershater M C, Puschmann H, Steel P G , Edwards R (2009). The C-glycosylation of flavonoids in cereals. J Biol Chem, 284(27): 17926–17934
|
16 |
Bungaruang L, Gutmann A, Nidetzky B (2013). Leloir glycosyltransferases and natural product glycosylation: Biocatalyticsynthesis of the C-glucoside nothofagin, a major antioxidant of redbushherbal tea. Adv Synth Catal, 355(14-15): 2757–2763
|
17 |
Cheng H, Li L, Cheng S , Cao F, Wang Y, Yuan H (2011). Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep, 30(1): 49–62
|
18 |
Choo C Y, Sulong N Y, Man F, Wong T W (2012). Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol, 142(3): 776–781
|
19 |
Courts F L, Williamson G (2015). Critical Reviews in Food Science and Nutrition The occurrence,fate and biological activities of C- glycosyl flavonoids in the humandiet. Crit Rev Food Sci Nutr, 55(10): 1352–1367
|
20 |
Crosby K C, Pietraszewska-Bogiel A, Gadella T W J Jr, Winkel B S J (2011). Förster resonance energy transfer demonstrates a flavonoid metabolon in livingplant cells that displays competitive interactions between enzymes. FEBS Lett, 585(14): 2193–2198
|
21 |
Crozier A, Jaganath I B, Clifford M N (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep, 26(8): 1001–1043
|
22 |
Day A J, Gee J M, DuPont M S, Johnson I T, Williamson G (2003). Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the ratsmall intestine: the role of lactase phlorizin hydrolase and the sodium-dependentglucose transporter. Biochem Pharmacol, 65(7): 1199–1206
|
23 |
Dey S, Corina Vlot A (2015). Ethylene responsive factors in the orchestration ofstress responses in monocotyledonous plants. Front Plant Sci, 6: 640
|
24 |
Dixon D P, Hawkins T, Hussey P J , Edwards R (2009). Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferasesuperfamily. J Exp Bot, 60(4): 1207–1218
|
25 |
Du Y, Chu H, Chu I K , Lo C (2010a). CYP93G2 is a flavanone 2-hydroxylase required for C-glycosyl-flavonebiosynthesis in rice. Plant Physiol, 154(1):324–33
|
26 |
Du Y, Chu H, Wang M , Chu I K , Lo C (2010b). Identificationof flavone phytoalexins and a pathogen-inducible flavone synthaseII gene (SbFNSII) in sorghum. J Exp Bot, 61(4): 983–994
|
27 |
Dürr C, Hoffmeister D, Wohlert S E , Ichinose K , Weber M , Von Mulert U , Thorson J S , Bechthold A (2004). The glycosyltransferase UrdGT2 catalyzes both C- andO-glycosidic sugar transfers. Angew Chem Int Ed Engl, 43(22): 2962–2965
|
28 |
Dzolin S, Ahmad R, Zain M M , Ismail M I (2015). Flavonoid distribution in four varieties of Ficus deltoidea (Jack). J Med Plant Herb Ther Res, 3: 1–9
|
29 |
El Amrani A, Barakate A, Askari B M , Li X, Roberts A G, Ryan M D, Halpin C (2004). Coordinate expression and independentsubcellular targeting of multiple proteins from a single transgene. Plant Physiol, 135(1): 16–24
|
30 |
Falcone Ferreyra M L , Rodriguez E , Casas M I , Labadie G , Grotewold E , Casati P (2013). Identification of a bifunctional maize C- and O-glucosyltransferase. J Biol Chem, 288(44): 31678–31688
|
31 |
Farsi E, Shafaei A, Hor S Y , Ahamed M B K , Fei M, Attitalla I H (2011). Correlation between enzymes inhibitory effects and antioxidant activities of standardizedfractions of methanolic extract obtained from Ficus deltoidea leaves. Afr J Biotechnol, 10(67): 15184–15194
|
32 |
François I E J A , Van Hemelrijck W , Aerts A M , Wouters P F J , Proost P , Broekaert W F , Cammue B P A (2004). Processing in Arabidopsis thaliana of a heterologous polyprotein resulting indifferential targeting of the individual plant defensins. Plant Sci, 166(1): 113–121
|
33 |
Ha S H, Liang Y S, Jung H, Ahn M J , Suh S C , Kweon S J , Kim D H , Kim Y M , Kim J K (2010). Application of two bicistronic systems involving 2Aand IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J, 8(8): 928–938
|
34 |
Hakamatsuka T, Mori K, Ishida S , Ebizuka Y , Sankawa U (1998). Purification of 2-hydroxyisoflavanone dehydratase from the Cell Cultures of Pueraria lobata. Phytochemistry, 49(2): 497–505
|
35 |
Halpin C, Cooke S E, Barakate A, El Amrani A , Ryan M D (1999). Self-processing 2A-polyproteins--a system for co-ordinate expression of multiple proteinsin transgenic plants. Plant J, 17(4): 453–459
|
36 |
Hasegawa K, Cowan A B, Nakatsuji N, Suemori H (2007). Efficient multicistronic expression of a transgene inhuman embryonic stem cells. Stem Cells, 25(7): 1707–1712
|
37 |
He M, Min J W, Kong W L, He X H, Li J X, Peng B W (2016). A review on the pharmacological effectsof vitexin and isovitexin. Fitoterapia, 115: 74–85
|
38 |
Hicks M A, Barber A E 2nd, Giddings L A, Caldwell J, O’Connor S E , Babbitt P C (2011). The evolution of function in strictosidine synthase-like proteins. Proteins, 79(11): 3082–3098
|
39 |
Isaacson T, Damasceno C M B, Saravanan R S, He Y, Catalá C , Saladié M , Rose J K (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc, 1(2): 769–774
|
40 |
Ishihara A, Ogura Y, Tebayashi S , Iwamura H (2002). Jasmonate-induced changes in flavonoid metabolism inbarley (Hordeum vulgare) leaves. Biosci Biotechnol Biochem, 66(10): 2176–2182
|
41 |
Ishikawa F, Haushalter R W, Burkart M D (2012). Dehydratase-specific probes for fatty acid and polyketide synthases. J Am Chem Soc, 134(2): 769–772
|
42 |
Jiménez C R , Huang L , Qiu Y, Burlingame A L (2001). Searching sequence databases overthe internet: protein identification using MS-Fit. Curr Protoc Protein Sci, Chapter 16: 5
|
43 |
Kaltenbach M, Schröder G, Schmelzer E , Lutz V, Schröder J (1999). Flavonoid hydroxylase from Catharanthus roseus: cDNA,heterologous expression, enzyme properties and cell-type specificexpression in plants. Plant J, 19(2): 183–193
|
44 |
Kašparová M , Siatka T (2014). Production of flavonoids and isoflavonoids in jasmonic acid-induced red clover suspension cultures. Ceska Slov Farm, 63(1): 17–21
|
45 |
Kerscher F, Franz G (1987). Biosynthesis of Vitexin and Isovitexin : Enzymatic Synthesis of theC-Glucosylflavones Vitexin and Isovitexin with an Enzyme Preparationfrom Fagopyrum esculentum M. Seedlings. Z Naturforsch C, 42: 519–524
|
46 |
Kramell R, Miersch O, Atzorn R , Parthier B , Wasternack C (2000). Octadecanoid-derived alteration of gene expression andthe “oxylipin signature” in stressed barley leaves. Implicationsfor different signaling pathways. Plant Physiol, 123(1): 177–188
|
47 |
Laemmli U K (1970). Cleavage of structural proteins duringthe assembly of the head of bacteriophage T4. Nature, 227(5259): 680–685
|
48 |
Le Roy J, Huss B, Creach A , Hawkins S , Neutelings G (2016). Glycosylation Is a Major Regulator of Phenylpropanoid Availability and BiologicalActivity in Plants. Front Plant Sci, 7: 735
|
49 |
Li Y, Dodge G J, Fiers W D, Fecik R A, Smith J L, Aldrich C C (2015). Functional Characterization of aDehydratase Domain from the Pikromycin Polyketide Synthase. J Am Chem Soc, 137(22): 7003–7006
|
50 |
Luley-Goedl C, Nidetzky B (2011). Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep, 28(5): 875–896
|
51 |
Lussier F X, Colatriano D, Wiltshire Z , Page J E , Martin V J J (2013). Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J, 3(4): e201210020
|
52 |
Martens S, Mithöfer A (2005). Flavones and flavone synthases. Phytochemistry, 66(20): 2399–2407
|
53 |
Mierziak J, Kostyn K, Kulma A (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10): 16240–16265
|
54 |
Misbah H, Aziz A A, Aminudin N (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med, 13(1): 118
|
55 |
Mizutani M, Sato F (2011). Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys, 507(1): 194–203
|
56 |
Mohd K S, Rosli A S, Azemin A, Mat N , Zakaria A J (2016). Comprehensive Biological Activities Evaluation and Quantification of Marker Compoundsof Ficus deltoiea Jack Varieties. Int J Pharmacogn Phytochem Res, 8: 1698–1708
|
57 |
Morant M, Bak S, Møller B L , Werck-Reichhart D (2003). Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol, 14(2): 151–162
|
58 |
Nagatomo Y, Usui S, Ito T , Kato A, Shimosaka M, Taguchi G (2014). Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J, 80(3): 437–448
|
59 |
Pauwels L, Inzé D, Goossens A (2009). Jasmonate-inducible gene: What does it mean? Trends Plant Sci, 14(2): 87–91
|
60 |
Praveena R, Sadasivam K, Kumaresan R , Deepha V , Sivakumar R (2013). Experimental and DFT studies on the antioxidant activityof a C-glycoside from Rhynchosia capitata. Spectrochim Acta A Mol Biomol Spectrosc, 103: 442–452
|
61 |
Rawat P, Kumar M, Sharan K , Chattopadhyay N , Maurya R (2009). Ulmosides A and B: flavonoid 6-C-glycosides from Ulmus wallichiana, stimulatingosteoblast differentiation assessed by alkaline phosphatase. Bioorg Med Chem Lett, 19(16): 4684–4687
|
62 |
Saito K, Yonekura-Sakakibara K, Nakabayashi R , Higashi Y , Yamazaki M , Tohge T , Fernie A R (2013). The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem, 72: 21–34
|
63 |
Schaller F (2001). Enzymes of the biosynthesis of octadecanoid-derivedsignalling molecules. J Exp Bot, 52(354): 11–23
|
64 |
Shafaei A, Farsi E, Ismail Z , Asmawi M Z (2012). Quantitative High Performance Thin-Layer ChromatographyMethod for Analysis of Vitexin and Isovitexin in Extracts of Leavesof Ficus deltoidea. Asian J Chem, 24: 2286
|
65 |
Shevchenko A, Tomas H, Havlis J , Olsen J V , Mann M (2006). In-geldigestion for mass spectrometric characterization of proteins andproteomes. Nat Protoc, 1(6): 2856–2860
|
66 |
Stafford H A (1991). Flavonoid evolution: an enzymic approach. Plant Physiol, 96(3): 680–685
|
67 |
University of California (2017). Ms-Fit. Available at: http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msfitstandard.
|
68 |
Väisänen E E , Smeds A I , Fagerstedt K V , Teeri T H , Willför S M , Kärkönen A (2015). Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotianabenthamiana seedlings. Planta, 242(3): 747–760
|
69 |
Wu J, Zaleski T J, Valenzano C, Khosla C , Cane D E (2005). Polyketide double bond biosynthesis. Mechanistic analysis of thedehydratase-containing module 2 of the picromycin/methymycin polyketidesynthase. J Am Chem Soc, 127(49): 17393–17404
|
70 |
Xiao J, Capanoglu E, Jassbi A R , Miron A (2016). Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr, 56(sup1 Suppl 1): S29–S45
|
71 |
Xiao J, Chen T, Cao H (2015). Flavonoid glycosylation and biological benefits. Biotechnol Adv,
|
72 |
Xu F, Li L, Zhang W , Cheng H , Sun N, Cheng S, Wang Y (2012). Isolation, characterization, and function analysis of a flavonolsynthase gene from Ginkgo biloba. Mol Biol Rep, 39(3): 2285–2296
|
73 |
Yang C Q, Fang X, Wu X M , Mao Y B , Wang L J , Chen X Y (2012). Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol, 54(10): 703–712
|
74 |
Yonekura-Sakakibara K , Hanada K (2011). An evolutionary view of functional diversity in family1 glycosyltransferases. Plant J, 66(1): 182–193
|
75 |
Yonekura-Sakakibara K , Tohge T , Matsuda F , Nakabayashi R , Takayama H , Niida R , Watanabe-Takahashi A , Inoue E , Saito K (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leadingto decoding gene-metabolite correlations in Arabidopsis. Plant Cell, 20(8): 2160–2176
|
76 |
Zhai R, Wang Z, Zhang S , Meng G, Song L, Wang Z , Li P, Ma F, Xu L (2016). Two MYB transcription factors regulate flavonoid biosynthesis inpear fruit (Pyrus bretschneideri Rehd.). J Exp Bot, 67(5): 1275–1284
|
77 |
Zhang X, Abrahan C, Colquhoun T A , Liu C and Sciences A (2017). A proteolytic regulator controlling chalcone synthasestability and flavonoid biosynthesis in Arabidopsis. Plant Cell Online, tpc-00855
|
78 |
Zhao J, Davis L C, Verpoorte R (2005). Elicitor signal transductionleading to production of plant secondary metabolites. Biotechnol Adv, 23(4): 283–333
|
79 |
Zunoliza A, Khalid H, Zhari I , Rasadah M A (2009). Anti-inflammatory activity of standardised extractsof leaves of three varieties of Ficus deltoidea. Int J Pharm Clin Res, 1: 100–105
|
/
〈 | 〉 |