Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS

Farah Izana Abdullah , Lee Suan Chua , Zaidah Rahmat

Front. Biol. ›› 2017, Vol. 12 ›› Issue (6) : 448 -458.

PDF (552KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (6) : 448 -458. DOI: 10.1007/s11515-017-1472-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS

Author information +
History +
PDF (552KB)

Abstract

BACKGROUND: Plant secondary metabolites act as defence molecules to protect plants from biotic and abiotic stresses. In particular, C-glycosylated flavonoids are more stable and reactive than their O-glycosylated counterparts. Therefore, vitexin (apigenin 8-C glucoside) present in Ficus deltoidea is well-known for its antioxidant, anti-inflammatory, and antidiabetic properties.

METHODS: Phenol based extraction was used to extract proteins (0.05% yield) with less plant pigments. This can be seen from clear protein bands in gel electrophoresis. In-gel trypsin digestion was subsequently carried out and analysed for the presence of peptides by LC-MS/MS.

RESULTS: Thirteen intact proteins are identified on a 12% polyacrylamide gel. The mass spectra matching was found to have 229 proteins, and 11.4% of these were involved in secondary metabolism. Proteins closely related to vitexin biosynthesis are listed and their functions are explained mechanistically. Vitexin synthesis is predicted to involve plant polyketide chalcone synthase, isomerization by chalcone isomerase, oxidation by cytochrome P450 to convert flavanone to flavone, and transfer of sugar moiety by C-glycosyltransferase, followed by dehydration to produce flavone-8-C-glucosides.

CONCLUSIONS: Phenol based extraction, followed by gel electrophoresis and LC-MS/MS could identify proteome explaining vitexin biosynthesis in F. deltoidea. Many transferases including β-1,3-galactosyltransferase 2 and glycosyl hydrolase family 10 protein were detected in this study. This explains the importance of transferase family proteins in C-glycosylated apigenin biosynthesis in medicinal plant.

Keywords

C-glycosylation / vitexin / apigenin 8-C glucoside / proteins / peptides / LC-MS/MS

Cite this article

Download citation ▾
Farah Izana Abdullah, Lee Suan Chua, Zaidah Rahmat. Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS. Front. Biol., 2017, 12(6): 448-458 DOI:10.1007/s11515-017-1472-0

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Plants produce a broad spectrum ofsecondary metabolites which play critical roles in plant-environmentinteractions and provide protection against biotic and abiotic stressessuch as pathogens, herbivores, drought, and ultraviolet light (Yang et al., 2012; Afrin et al., 2015). Secondary metabolitesare produced along with the primary metabolite pathway during plantgrowth and development. Although plant secondary metabolites are notinvolved in energy production, growth, reproduction, or other plantprimary functions, they perform important functions such as protection,attraction, and signaling (Bernhoftet al., 2010). These plant bioactive compounds exhibitpharmacological and/or toxicological effects that could be furtherdeveloped into drugs for a wide range of diseases such as cancer,malaria, and schizophrenia (Hickset al., 2011; Afrin etal., 2015).

Recent studies have also shown thatmany bioactive compounds from natural products contain sugar moietyin their molecular structures. Glycosylation could enhance the physiological,selectivity, stability, solubility, and pharmacological propertiesof compounds acting as functional food additives and cosmetic ingredients(Luley-Goedl and Nidetzky, 2011; Xiao et al., 2015, 2016). C-glycosylated flavonoidshave received less attention compared to O-glycosides (Xiao et al., 2016). However, C-glycosylatedflavonoids are more stable than O-glycosidic bonds because of theirhigh resistance to chemical or enzyme-catalyzed hydrolysis (Bungaruang et al., 2013).

Vitexin (apigenin 8-C-glycoside)is one of best-known C-glycosides because of its remarkable pharmacologicalactivities, which include anti-inflammatory (Zunoliza et al., 2009) and antioxidantproperties (Farsi et al., 2011) and a-amylase and a-glucosidase inhibition that can reducepostprandial hyperglycemia and diabetic complications (Farsi et al., 2011; Choo et al., 2012). It is also regardedas a marker compound for F. deltoidea, locally known as Mas Cotek (Shafaeiet al., 2012; Azeminet al., 2014; Mohd etal., 2016). F. deltoidea, which belongs to the family Moraceae, is a popular medicinal herbin Malaysia. It has traditionally been used by the locals to treatillnesses, including fever and headache, to regulate blood sugar andblood pressure, and to control cholesterol levels (Misbah et al. 2013). Therefore, theobjective of this study was to predict the secondary mechanism ofvitexin production in F. deltoidea based on the identified proteins as primary building blocks. Understandingthis mechanism will enhance the production of vitexin as a potentiallead compound in drug discovery.

Material and methods

Plant material

F. deltoidea was obtained from Nursery Herba Pak Ali (Skudai, Johor, Malaysia)and authenticated by the herbarium of Universiti Kebangsaan Malaysia(Bangi, Selangor, Malaysia) under specimen number 40213. The samplewas confirmed to be F. deltoidea Jack var. trengganuensis Corner.The plant was cultivated in a mixture of sand and compost soil (1:1)and allowed to grow in natural glasshouse at the Plant BiotechnologyLaboratory, Faculty of Bioscience and Medical Engineering, UniversitiTeknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia.

Protein extraction

Plant proteins were extracted fromthe leaves of F. deltoidea accordingto the method described by Isaacsonet al. (2006). One gram of frozen leaf tissues was homogenizedin liquid nitrogen and extracted by 10 mL cold extraction buffer consistingof 0.7 M sucrose, 0.1 M KCl, 0.5 M Tris-HCl (pH 7.5), 50 mM EDTA,1 mM phenyl methyl sulfonyl fluoride (PMSF), and 2% b-mercaptoethanol. An equal volume of Tris-bufferedphenol was added to the mixture and then the mixture was incubatedon a shaker for 30 min at 4°C. After incubation, the mixture wascentrifuged for 30 min at 5000 × g at 4°C. The phenol phase, which was located at the top of thetube, was carefully harvested and the remaining mixture was re-extractedby the extraction buffer in an equal volume ratio. The mixture wasincubated and centrifuged again to collect the phenol phase. Fivevolumes of cold ammonium acetate (0.1 M) in methanol was added intothe recovered phenol solution and stored at -20°C overnight. The precipitate was obtained aftercentrifugation for 30 min at 5000 × g at 4°C. The protein pellet was gently mixed andrinsed twice with ice-cold methanol prior to centrifugation for 10min at 5000 × g at 4°C.Acetone was used to perform the final wash for the pellet, and thenthe pellet was air-dried under a vacuum for 3 min. Protein concentrationwas estimated by Bradford assay (Bradford,1976), using a serial concentration of bovine serumalbumin (0–15 µg/mL) as the standard chemical for thecalibration curve.

SDS gel electrophoresis (SDS-PAGE)

One-dimensional SDS–PAGE wasperformed to separate the extracted proteins according to the methoddescribed by Laemmli (1970). Samples were treated with rehydrationbuffer (8 M urea, 20 mM DTT, 4% CHAPS, and 5 mM Tris-Base), followedby boiling for 5 min. After centrifugation, 25 µL supernatantwas loaded onto a 12% (w/v) polyacrylamide running gel. Electrophoresiswas conducted at a constant current (20 mA) in 50 mM Tris–glycine–SDS(pH 8.3) running buffer for 2 h. A mixture of protein marker (PrecisionPlus Protein TM Prestained Standard Dual Xtra marker, BIO-RAD) wasused to determine the molecular masses of the detected proteins, andCoomassie Brilliant Blue G-250 was used to stain for protein visualization.

In-gel digestion

The protein bands on the electrophoreticgel were cut and divided into three sections according to their molecularsizes (1–20, 21–50, and 51–250 kDa). They were thendiced into smaller pieces of approximately 1–2 mm2 in size and transferred into 1.5 mL centrifuge tubes.In-gel digestion was performed following the method explained by Shevchenko et al. (2006). The CoomassieBrilliant Blue G-250 dye on the excised protein bands was removedwith three cycles of dehydration and hydration steps using acetonitrileand 100 mM ammonium bicarbonate, respectively. The proteins in thegel were then subjected to in situ reduction, alkylation, and finallydigestion by trypsin overnight. The peptides eluted from the gel wereconcentrated and followed by purification using C18 Zip-Tips (Merck,Millipore, USA).

LC-MS/MS

The tryptic peptides were re-suspendedin 0.1% (v/v) formic acid, and then analyzed by a micro-capillaryUltiMate 3000 (Sunnyvale, CA) system integrated with a quadrupole-time-of-flight(QTOF) mass spectrometer (AB SCIEX QSTAR Elite; Foster City, CA) witha turbo spray ionization (TIS) source. A C18 reversed phase Zorbax300SB column (150 × 0.3 mm, 5 µm) with a flow rate of5 µL/min was used for separation. A binary gradient system consistingof solvent A (water with 0.1% formic acid) and solvent B (acetonitrilewith 0.1% formic acid) was used. The LC gradient was: 0–5 min,2% B; 5–15 min, 2%–45% B; 15–16 min, 45%–80%B; 80% B hold for 2 min; 18–19 min, 80– 2% B; and 2% Bhold for 10 min. The injection volume was 5 µL.

Protein identification

The mass spectrometric data was searchedfor protein matches using MS-Fit (University of California, 2017). The parameters were:database, NCBInr.2013.6.17 against Arabidopsisthaliana; digest used, trypsin; maximum number of missedcleavages, 2; constant modification, carbamidomethyl; minimum matches,2; sort type, score sort; minimum parent ion matches, 1; MOWSE On,1; MOWSE P-factor, 0.4 (Jiménezet al., 2001).

Results and discussion

Plant protein extraction

Phenol-based extraction was carriedout to extract the plant proteins, which were then recovered by phenol.The extraction buffer was composed of PMSF to inhibit proteases thatmight be released upon cell rupture during extraction. EDTA was addedinto the buffer to hinder the activities of metalloproteases and oxidasesby chelating metal ions. b-mercaptoethanol,a reducing agent, was used to protect proteins from oxidation, whilepotassium chloride was used to facilitate extraction via its saltingeffect. The addition of sucrose assisted phase separation betweenthe extraction buffer and phenol phases so that phenol could be harvestedfor high recovery of the proteins.

In the present study, phenol-basedextraction recovered 459.24 µg/g plant proteins from the leavesof F. deltoidea. The protein pelletwas white in color, indicating that few plant contaminants such aschlorophylls and pigments were co-extracted by this method. The electrophoreticgel of the extracted protein mixture is presented in Fig. 1. Thirteenintact proteins were separated on the 12% polyacrylamide gel. Themolecular size of the intact proteins ranged from 10 to 245 kDa, withmost of them being in the intermediate range of 20–135 kDa.The protein bands were excised and digested with trypsin into peptidesfor mass spectrometric analysis.

Plant protein identification

The mass spectra were analyzed andmatched to the protein database of the National Center for BiotechnologyInformation (NCBI) using MS-Fit. A total of 229 proteins were found.The identified proteins were categorized into several classes, suchas proteins involved in secondary metabolism, hormone metabolism,and signaling, according to their functional groups as stated in thegene ontology of the GoMapMan database (http://www.gomapman.org/ontology).Only proteins related to secondary metabolite production were selected,and these are listed together with their matched peptide sequencesin Table 1. Some of the proteins perform more than one function, andtherefore are grouped into the miscellaneous category.

Biosynthesis of plant secondary metabolites

The biosynthesis of secondary metabolitesis controlled by a complex network of many regulatory proteins knownas transcription factors (TFs). The transcription factors usuallybind to specific regions of promoters at the target genes, followedby activation or repression of their expressions to regulate secondarymetabolism. Members of the TF family, including putative WRKY transcriptionfactor 2, putative c-myb-like transcription factor MYB3R-4, ethylene-responsivefactor 2 (ERF2) and 10 (ERF 10), auxin response factor 10 (ARF 10),and ABRE binding factor 4, were identified in the present study. TFssuch as MYC, MYB, WRKY, and APETALA2/Ethylene-Responsive Factor (AP2/ERF)have been shown to be involved in the regulation of secondary metabolismin medicinal plants (Afrin et al.,2015; Dey and Corina,2015). The expression of MYB-like gene encoding enzyme,which is involved in the biosynthesis of secondary metabolites, iscontrolled by TFs. For example, PbMYB9 is an activator of the proanthocyanidin,anthocyanin, and flavonol pathways, and its function is essentialfor flavonoid biosynthesis in pear fruits (Zhai et al., 2016).

In this study, 12-oxophytodienoatereductase 1 (OPR1) was identified. This protein is involved in thefinal step of the b-oxidation cycleto yield the end product of jasmonic acid (Schaller, 2001). The oxylipin-typemolecule of jasmonic acid is synthesized from a-linolenic acid via the octadecanoid pathway (Schaller, 2001; Pauwels et al., 2009). Jasmonic acidand its derivatives are important signaling molecules for the productionof secondary metabolites in the plant kingdom (Zhao et al., 2005; Pauwels et al., 2009). Jasmonic acid,which also acts as a phytohormone, can synthesize a wide variety ofplant secondary metabolites, primarily terpenoids, flavonoids, alkaloids,glucosinolates, anthocyanins, and isoprenoids (Pauwels et al., 2009). Jasmonic acidand jasmonates (methyl jasmonate) are key signaling compounds thatcontrol the expression of specific genes such as jasmonate-responsivegene 1 (jrg1), and are followed by the synthesis of jasmonate-inducedproteins (JIPs) whenever they are exposed to external stimuli suchas biotic and abiotic stress (Kramellet al., 2000). Jasmonates induce transcription of thegene encoding phenylalanine ammonia lyase (PAL) as the key enzymeof the phenylpropanoid pathway in flavonoid synthesis (Kašparová and Siatka, 2014). The accumulation of secondary metabolites is considered the finalconsequence of the biochemical changes induced by jasmonates (Ishihara et al., 2002). The combinationof the jasmonic acid and ethylene signaling pathways is essentialfor plant defense responses to stresses. Ethylene may not be a commonsignal for plant induction, and the effect of ethylene on secondarymetabolite production is dependent on ethylene concentration (Zhao et al., 2005).

Post-translational modification by transferases

Some of the identified proteins arecategorized as transferases. Transferases are involved in post-translationalmodification. For example, glycosyltransferases catalyze the transferof sugar moieties from activated donor molecules to specific acceptormolecules through the formation of O-, N-, S-, and C-glycosidic bondswith acceptors of small molecules such as sugars, lipids, proteins,or small molecules including phenylpropanoids. The glycosylation isregulated by the combination of regioselective glycosyltransferases(GTs) and glycoside hydrolases (GHs) (Le Roy et al., 2016). In thepresent study, the proteins detected in this category included putativebeta-1,3-galactosyltransferase 2, putative glycosyl hydrolase family10, putative beta-galactosidase, beta-galactosidase 5, and O-fucosyltransferasefamily protein. GTs that catalyze sugar conjugation of secondary metabolitesbelonging to the GT1 family are known as uridine diphosphate-glycosyltransferases(UGTs). UGTs are used by plants to synthesize flavonoids. UGTs facilitateglycosylation from a donor called uridine diphosphate glucose (UDPglucose).Sucrose synthase was also identified in this study. Sucrose synthaseis an enzyme (SuSy) used to catalyze a reversible sucrose conversionto fructose and UDPglucose in the presence of UDP (Bungaruang et al.,2013). In plants, the sugar donor is usually glucose, but it can alsobe galactose, xylose, rhamnose, arabinose, or glucuronic acid (Yonekura-Sakakibaraet al., 2008). Flavonoid glycosylation typically occurs at ring positionsbearing hydroxyl groups. When an acceptor has multiple binding sitesfor a sugar, UGTs exhibit regioselectivity by transferring the sugarto a specific position. Glycosylation is also regulated by glycosidehydrolases (GHs) in the hydrolysis and/or rearrangement of glycosidicbonds (Le Roy et al., 2016). Therefore, transferases are very importantfor vitexin synthesis in F. deltoidea. They are involved in the laterstage of translation after flavanone synthesis.

Many phenylpropanoid pathway-derivedproducts are toxic and unstable molecules, and therefore they seldomaccumulate as their aglycones in plants (Alejandro et al., 2012; Väisänen et al., 2015). Glycosylation cantherefore reduce phenylpropanoid toxicity and increase stability andsolubility and can also influence compartmentalization and biologicalactivity (Le Roy et al., 2016). Among the diverse phenylpropanoids, flavonoids are probably thebest-characterized molecules in terms of glycosylation owing to theirbroad medical and commercial benefits. Natural flavonoids are presentin the form of O-glycosides or C-glycosides in plants (Xiao et al., 2015).

C-glycosylated flavonoids have beenfound to possess better therapeutic properties than O-glycosylatedflavonoids. C-glycosides can act as siderophores, antibiotics, antioxidants,attractants, and feeding deterrents (Brazier-Hicks et al., 2009). C-glycosylated flavonoidsare also more stable against the activity of glycosidases under hydrolyticconditions (Rawat et al., 2009). Among the reported C-glycosides, flavone C-glycosides, especiallyvitexin, isoorientin, orientin, isovitexin, and their multi-glycosideshave been frequently mentioned in the literature. O-glycosides arelikely to have lower in vivo lifetimes (Bungaruang et al., 2013).

Vitexin (apigenin-8-C-glucoside)and isovitexin (apigenin-6-C-glucoside) are the main C-glycosylatedflavonoid constituents of F. deltoidea. Isovitexin is an isomer of vitexin, and its C-glycosylation happensat C-6. They are considered the chemical markers for this herb (Azemin et al., 2014). Often, C-glycosylflavonoids are produced in greater amounts than O-glycosyl flavonoidsby weight (Courts and Williamson,2015). The level of vitexin in the leaf extracts of F. deltoidea was found to be higher thanthat of isovitexin. For instance, 12.31 mg/g vitexin and 4.81 mg/gisovitexin were reported in methanol extract, and 6.20 mg/g vitexinand 0.81 mg/g isovitexin were found in water extract (Shafaei et al., 2012). Another studythat assessed the content of vitexin and isovitexin in F. deltoidea varieties using the high-performanceliquid chromatographic method found that vitexin and isovitexin comprised1.53% and 0.9% of a 10 mg leaf sample (Mohd et al., 2016).

The chemical name of vitexin is 8-D-glucosyl-4′,5,7-trihydroxy-flavone,and is known as ‘Mujingsu’ in Chinese. It is an activecomponent in many traditional Chinese medicines. To our knowledge,no different pharmacological properties of vitexin and isovitexinhave been reported to date. Praveenaet al. (2013) reported that C-8 glycosylation decreasedthe negative charge on the oxygen atom at the C-3 position, leadingto better antioxidant potency of vitexin as compared to apigenin.However, Brazier-Hicks and Edwards(2013) revealed that vitexin and isovitexin exhibitedsimilar pharmacological effects, partly owing to their similarityin chemical structures. Both C-glycosides were found to possess antioxidant(Farsi et al., 2011)and anti-inflammatory properties (Zunoliza et al., 2009), as well as a–amylase and a-glucosidase inhibition (Farsi etal., 2011; Choo et al.,2012), which may reduce postprandial hyperglycemia anddiabetic complications.

Secondary mechanism of vitexin synthesis

A large number of plant secondarymetabolites derive from phenylalanine and tyrosine as precursors viathe phenylpropanoid pathway (Le Royet al., 2016). Hence, flavonoids are considered to bephenylpropanoid-derived compounds (Stafford, 1991). Flavonoids are synthesized from thecondensation of p-coumaroyl-CoA with three malonyl-CoA molecules bychalcone synthase (CHS), which in turn produces a flavanone containinga 2-phenylchroman backbone (Le Royet al., 2016). The 2-phenylchroman backbone is the basicstructure of flavanols, isoflavonoids, flavonols, flavones, and anthocyanidins.In the present study, flavonol synthase (FLS) was detected; FLS isused to synthesize flavonols through dihydroflavonols as intermediates.FLS expression can be induced by several abiotic stresses includingUV-B, abscisic acid, cold, sucrose, salicylic acid, and ethephon.Previous studies indicate that detection of FLS also explains thepresence of flavonols such as myricetin and kaempferol (Dzolin et al., 2015). Xu et al. (2012) revealed that FLScould also catalyze the formation of dihydrokaempferol to kaempferol(flavonol) and the conversion of kaempferol from naringenin (flavanone).

Biosynthesis of vitexin in F. deltoidea follows four major steps ina mechanistic pathway: condensation by plant polyketide chalcone synthase(CHS), isomerization either spontaneously or catalyzed by chalconeisomerase (CHI), oxidation by cytochrome P450 (CYP P450) to convertflavanone to flavone, and finally the transfer of sugar moiety byC-glycosyl transferase (CGT), followed by a dehydration step to produceflavone-6-C-glucosides, as illustrated in Fig. 2.

CHS is one of the plant type IIIpolyketide synthases (PKS). CHS is the first committed enzyme in thebiosynthesis of flavonoids and directs carbon flux from the generalphenylpropanoid metabolism to the flavonoid pathway (Saito et al., 2013; Zhang et al., 2017). It initiatesthe loading of p-coumaroyl-CoA to its active site, followed by twomalonyl-CoA units, until a linear tetraketide chain is created, whichis then circularized to form the chalcone product through an aromatase-likemechanism (Austin and Noel, 2003). The spontaneous cyclization of the triketide intermediate resultsin the formation of naringenin chalcone. Lussier et al., (2013) suggestedthat naringenin chalcone was produced via a Claisen cyclization reaction.CHS initiates the elongation of p-coumaroyl-CoA to a C15 skeletonresulting branch of the phenylpropanoid pathway, and produces a varietyof stress-induced compounds and pigments. Light is one of the mostimportant factors triggering flavonoid biosynthesis and inductionof light-responsive gene expression. This may explain why flavonoidsare scarcely produced in plants grown in the dark, since there isa lack of genes encoding expression for CHS (Kaltenbach et al., 1999).

The second step of flavone synthesisis the isomerization of chalcone to flavanone by chalcone isomerase.CHI catalyzes the stereospecific cyclization of naringenin chalconeto (2S)-naringenin (Saito et al.,2013). Although this step can occur spontaneously, CHI-catalyzedisomerization is approximately 107-fold more efficient than spontaneousisomerization (Bednar and Hadcock, 1988). The non-enzymatic conversionof chalcones yields racemic (2R/S)-flavanones. Since only (2S)-flavanonesare intermediates of the subsequent flavonoid pathway, CHI specificityguarantees efficient formation of biologically active (2S)-flavanone(Bednar and Hadcock, 1988; Cheng etal., 2011). The expression of genes encoding for CHIis also upregulated by UV-B irradiation (Cheng et al., 2011).

After isomerization of chalcone toflavanone by chalcone isomerase (CHI), the subsequent pathway branchesto several different flavonoid classes, including aurones, dihydrochalcones,flavanonols (dihydroflavonols), isoflavones, flavones, flavonols,leucoanthocyanidins, anthocyanins, and proanthocyanidins (Mierziak et al., 2014). Flavonesare synthesized from flavanones by the introduction of a double bondbetween the C-2 and C-3 positions by flavone synthase (FNS) (Martensand Mithofer, 2005). FNS converts naringenin either directly to apigenin(flavones) or 2-hydroxyflavanones by FNS II (Fig. 2). The conversionof naringenin to 2-hydroxyflavanones is catalyzed by flavanone-2-hydroxylase(F2H) (Yonekura-Sakakibara and Hanada,2011). It is noteworthy that FNS II can also have F2Hor FNS activity. FNS II functions as oxygen- and NADPH-dependent CYPP450 membrane-bound monooxygenases, which are widespread among higherplants. FNS II belongs to the CYP 93B subfamily for dicots and theCYP 93G subfamily for monocots (Martens and Mithofer, 2005). CYP P450-linkedenzymes are implicated in the biosynthesis of various structural,growth regulatory, and protective substances in plant cells via numerousmetabolic pathways. They contribute to the stable equilibrium of phytohormonesand signaling molecules by controlling their biosynthesis and catabolism.They are involved in the biosynthesis of pigments, volatiles, antioxidants,allelochemicals, and defense compounds, including phenolics and theirconjugates, flavonoids, coumarins, lignans, glucosinolates, cyanogenicglucosides, benzoxazinones, isoprenoids, and alkaloids (Morant et al., 2003; Mizutani and Sato, 2011).

In this study, five CYP P450s-basedproteins were detected (Table 1). CYP 706 is involved in terpenoidmetabolism. CYP 71A28 was previously known as CYP 713A2, belongingto the subfamily of CYP 71 A, which has been shown to have monoterpenehydroxylase activity. CYP 87 is involved in plant hormone metabolism,and LACERATA (CYP 86A8) is involved in fatty acid metabolism (Bak et al., 2011). Plant CYP P450sare bound to membranes, usually anchored on the cytoplasmic surfaceof the endoplasmic reticulum. They need to be coupled to electron-donatingproteins such as CYP P450 reductases or CYP b5 for activation (Bak et al., 2011). Even though allCYP P450s found in this study are related to terpenoid, hormone, andfatty acid biosynthesis, proteins of CYP P450s are also known to havemulti-catalyzing functions. Therefore, the identified CYP P450s mightalso be involved in the introduction of double bond to the C-2 andC-3 positions in order to convert naringenin to 2-hydroxyflavanonesin third step of vitexin biosynthesis.

However, little is known about flavone-C-glycosidebiosynthesis. Flavanone, which is the core intermediate of the flavonepathway, is most likely to be a precursor. This reaction is mediatedby C-glycosyltransferase (CGT), which catalyzes the formation of flavone-C-glycosidesfrom flavanone precursors (Brazier-Hickset al., 2009). Figure 2 shows that flavanones are hydroxylatedby F2H/FNS II to form 2-hyroxylflavanones, and then glycosylated to2-hydroxylflavanone C-glycosides by CGT. This C-glycosylated 2-hydroxyflavanoneis consequently dehydrated to produce flavone C-glycosides.

Kerscherand Franz (1987) reported that CGT from Fagopyrum esculentum seedlings catalyzedthe transfer of glucose to 2-hydroxyflavanones. Naringenin, naringenin-chalcone,and flavones such as apigenin and chrysin cannot act as glucosyl acceptorsin C-glycosyl-flavonoid biosynthesis. C-glycosylation takes placeafter dehydration of 2-hydroxynaringenin. This finding was also supportedby another study on cereal crops where C-glycosylated flavones weresynthesized through the action of CGT and dehydratase on 2-hydroxyflavanones(Brazier-Hicks et al., 2009). The dehydration step from unstable 2-hydroxyflavanones can occurspontaneously or can be catalyzed by an enzyme (Akashi et al., 2005). However, flavone-6-C-glucosidesare preferentially formed in plants. 2-hydroxyflavanone conjugatesundergo spontaneous dehydration to yield a mixture of flavone-6-C-and flavone-8-C-glucosides (Brazier-Hickset al., 2009). Isoflavone is formed by 1,2-eliminationof water from 2-hydroxyisoflavanone catalyzed by 2-hydroxyisoflavanonedehydratase (HID). HID displays clear substrate specificity and isdistinguishable from differently substituted 2-hydroxyisoflavanone.Histidine and aspartic acid are critical residues for HID catalysis(Hakamatsuka et al., 1998; Akashi et al., 2005). The spontaneous dehydration to form isoflavones is slow comparedto the enzyme-catalyzed reaction. This suggests that production offlavones in plants primarily depends on enzymes. The non-enzymaticslow production of isoflavone in plants becomes an alternative process(Akashi et al., 2005).

CGT from Zea mays displays O-glycosylation activity toward naringenin,but C-glycosylation activity toward 2-hydroxynaringenin (Falcone Ferreyra et al., 2013). Thisindicates that the activity of CGT is highly specific to 2-hydroxynaringeninand its derivatives, such as 2,4′,5,7-tetrahydroxyflavanoneand 2,5,7-trihydroxyflavanone. CGT does not accept flavanones, flavones,or flavonols as glucose acceptors (Kerscher and Franz, 1987; Nagatomo et al., 2014). Vitexin and isovitexin havebeen found to be present only in certain plants, especially in plantswith medicinal values (He et al.,2016). Medicinal plants such as pearl millet (El Amrani et al., 2004), hawthorn(Akashi et al., 1999),pigeon pea (Brazier-Hicks et al.,2008; Crosby et al.,2011), mung bean (Crozieret al., 2009), mosses (Day et al., 2003; Dixonet al., 2009), Passiflora (Du et al., 2010a, 2010b), bamboo (Dürr et al., 2004; François et al., 2004), mimosa (Ha et al., 2010), wheat leaves (Halpin et al., 1999), and chaste tree or chaste berry (Hasegawa et al., 2007) have been previously reportedto contain flavones.

PKS has three processing domains;namely, the ketoreductase (KR), dehydratase (DH), and enoylreductase(ER) domains (Li et al., 2015). The dehydratase (DH) domain of PKS was identified in this study.Dehydratase domains of PKSs function to generate an a,b-unsaturatedbond through a dehydration reaction in a cis or trans configuration (Akeyet al., 2010). This catalyzes the formation of the unsaturated triketideintermediate using malonyl-CoA as the chain extension substrate (Wu et al., 2005). The double bondsare formed by DH domains through abstraction of the a-proton and concomitant protonation of the b-hydroxyl group of the nascent b-hydroxyacyl-ACP polyketide intermediate,resulting in loss of one water molecule (Li et al., 2015). The active site of DH contains ahistidine residue from the N-terminal and an aspartate residue fromthe C-terminal. Histidine and aspartic are conserved across DH-containingenzymes (Wu et al., 2005; Akey et al., 2010; Ishikawa etal., 2012; Li et al.,2015). The products of all DH reactions contain a, b-doublebonds conjugated with the thioester carbonyl (acetyl-CoA) (Akey etal., 2010). Several similarities have been observed between DH domainof PKS and HID. Both proteins possess conserved histidine and asparticacid residues at their active sites for catalytic activity. They catalyzeformation of an a, b-double bond by the loss of a water molecule(Li et al., 2015). Theyalso display high substrate specificity, where double bond confirmationdepends on the chirality of the b- OH substrate. Thus, the DH domainof PKS identified from this study might be responsible for the dehydrationstep to produce corresponding vitexin in F.deltoidea leaves.

Conclusions

Vitexin biosynthesis in F. deltoidea was predicted to follow a four-stepmechanism involving plant polyketide chalcone synthase (CHS); isomerization,either spontaneous or catalyzed by chalcone isomerase (CHI); oxidationby CYP P450 to convert flavanone to flavone; and the transfer of sugarmoiety by C-glycosyltransferase (CGT), followed by dehydration toproduce flavone-8-C-glucosides. The detection of the proteins alsosupports previous findings that vitexin is present in medicinal plants. F. deltoidea is a traditional medicinal plantthat is widely used by indigenous peoples in South-east Asian countries.Further studies are required to elucidate the related biochemicalpathways in order to trigger vitexin production.

References

[1]

Adam ZKhamis  SIsmail A Hamid M (2012). Ficus deltoidea: A potential alternative medicine fordiabetes mellitus. Evid Based ComplementAlternat Med2012: 632763

[2]

Afrin SHuang  J JLuo  Z Y (2015). JA-mediated transcriptionalregulation of secondary metabolism in medicinal plants. Sci Bull60(12): 1062–1072

[3]

Akashi TAoki  TAyabe S (2005). Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvementof carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol137(3): 882–891

[4]

Akashi TFukuchi-Mizutani  MAoki T Ueyama Y Yonekura-Sakakibara K Tanaka Y Kusumi T Ayabe S (1999). Molecular cloning and biochemical characterization of a novel cytochromeP450, flavone synthase II, that catalyzes direct conversion of flavanonesto flavones. Plant Cell Physiol40(11): 1182–1186

[5]

Akey D LRazelun  J RTehranisa  JSherman D H Gerwick W H Smith J L (2010). Crystal structures of dehydratase domains from the curacin polyketide biosyntheticpathway. Structure18(1): 94–105

[6]

Alejandro SLee  YTohge T Sudre D Osorio S Park JBovet  LLee Y Geldner N Fernie A R Martinoia E (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol22(13): 1207–1212

[7]

Austin M BNoel  J P (2003). The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep20(1): 79–110

[8]

Azemin ADharmaraj  SHamdan M R Mat NIsmail  ZKhamsah S M (2014). Discriminating Ficus deltoidea var. bornensis from Different Localities by HPTLC and FTIR Fingerprinting. J Appl Pharm Sci4: 69–75

[9]

Bak SBeisson  FBishop G Hamberger B Höfer R Paquette S (2011). Cytochromes P450. Arab B, e0144 

[10]

Bednar R AHadcock  J R (1988). Purification and characterization of chalcone isomerasefrom soybeans. J Biol Chem263(20): 9582–9588

[11]

Bernhoft ASiem  HBjertness E Meltzer M Flaten T Holmsen E (2010). Bioactive compounds in plants–benefits and risks for man and animals. in Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters,Novus forlag, Oslo

[12]

Bradford M M (1976). A rapid and sensitive method forthe quantitation of microgram quantities of protein utilizing theprinciple of protein-dye binding. Anal Biochem72(1-2): 248–254

[13]

Brazier-Hicks MEdwards  R (2013). Metabolic engineering of the flavone-C-glycoside pathwayusing polyprotein technology. Metab Eng16: 11–20

[14]

Brazier-Hicks MEvans  K MCunningham  O DHodgson  D R WSteel  P GEdwards  R (2008). Catabolism of glutathioneconjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem283(30): 21102–21112

[15]

Brazier-Hicks MEvans  K MGershater  M CPuschmann  HSteel P G Edwards R (2009). The C-glycosylation of flavonoids in cereals. J Biol Chem284(27): 17926–17934

[16]

Bungaruang LGutmann  ANidetzky B (2013). Leloir glycosyltransferases and natural product glycosylation: Biocatalyticsynthesis of the C-glucoside nothofagin, a major antioxidant of redbushherbal tea. Adv Synth Catal355(14-15): 2757–2763

[17]

Cheng HLi  LCheng S Cao FWang  YYuan H (2011). Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep30(1): 49–62

[18]

Choo C YSulong  N YMan  FWong T W (2012). Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol142(3): 776–781

[19]

Courts F LWilliamson  G (2015). Critical Reviews in Food Science and Nutrition The occurrence,fate and biological activities of C- glycosyl flavonoids in the humandiet. Crit Rev Food Sci Nutr55(10): 1352–1367

[20]

Crosby K CPietraszewska-Bogiel  AGadella T W J Jr,  Winkel B S J (2011). Förster resonance energy transfer demonstrates a flavonoid metabolon in livingplant cells that displays competitive interactions between enzymes. FEBS Lett585(14): 2193–2198

[21]

Crozier AJaganath  I BClifford  M N (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep26(8): 1001–1043

[22]

Day A JGee  J MDuPont  M SJohnson  I TWilliamson  G (2003). Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the ratsmall intestine: the role of lactase phlorizin hydrolase and the sodium-dependentglucose transporter. Biochem Pharmacol65(7): 1199–1206 

[23]

Dey SCorina Vlot  A (2015). Ethylene responsive factors in the orchestration ofstress responses in monocotyledonous plants. Front Plant Sci6: 640

[24]

Dixon D PHawkins  THussey P J Edwards R (2009). Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferasesuperfamily. J Exp Bot60(4): 1207–1218

[25]

Du YChu  HChu I K Lo C (2010a). CYP93G2 is a flavanone 2-hydroxylase required for C-glycosyl-flavonebiosynthesis in rice. Plant Physiol154(1):324–33

[26]

Du YChu  HWang M Chu I K Lo C (2010b). Identificationof flavone phytoalexins and a pathogen-inducible flavone synthaseII gene (SbFNSII) in sorghum. J Exp Bot61(4): 983–994

[27]

Dürr CHoffmeister  DWohlert S E Ichinose K Weber M Von Mulert U Thorson J S Bechthold A (2004). The glycosyltransferase UrdGT2 catalyzes both C- andO-glycosidic sugar transfers. Angew Chem Int Ed Engl43(22): 2962–2965

[28]

Dzolin SAhmad  RZain M M Ismail M I (2015). Flavonoid distribution in four varieties of Ficus deltoidea (Jack). J Med Plant Herb Ther Res3: 1–9

[29]

El Amrani ABarakate  AAskari B M Li XRoberts  A GRyan  M DHalpin  C (2004). Coordinate expression and independentsubcellular targeting of multiple proteins from a single transgene. Plant Physiol135(1): 16–24

[30]

Falcone Ferreyra M L Rodriguez E Casas M I Labadie G Grotewold E Casati P (2013). Identification of a bifunctional maize C- and O-glucosyltransferase. J Biol Chem288(44): 31678–31688

[31]

Farsi EShafaei  AHor S Y Ahamed M B K Fei MAttitalla  I H (2011). Correlation between enzymes inhibitory effects and antioxidant activities of standardizedfractions of methanolic extract obtained from Ficus deltoidea leaves. Afr J Biotechnol10(67): 15184–15194

[32]

François I E J A Van Hemelrijck W Aerts A M Wouters P F J Proost P Broekaert W F Cammue B P A (2004). Processing in Arabidopsis thaliana of a heterologous polyprotein resulting indifferential targeting of the individual plant defensins. Plant Sci166(1): 113–121

[33]

Ha S HLiang  Y SJung  HAhn M J Suh S C Kweon S J Kim D H Kim Y M Kim J K (2010). Application of two bicistronic systems involving 2Aand IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J8(8): 928–938

[34]

Hakamatsuka TMori  KIshida S Ebizuka Y Sankawa U (1998). Purification of 2-hydroxyisoflavanone dehydratase from the Cell Cultures of Pueraria lobata. Phytochemistry49(2): 497–505

[35]

Halpin CCooke  S EBarakate  AEl Amrani A Ryan M D (1999). Self-processing 2A-polyproteins--a system for co-ordinate expression of multiple proteinsin transgenic plants. Plant J17(4): 453–459

[36]

Hasegawa KCowan  A BNakatsuji  NSuemori H (2007). Efficient multicistronic expression of a transgene inhuman embryonic stem cells. Stem Cells25(7): 1707–1712

[37]

He MMin  J WKong  W LHe  X HLi  J XPeng  B W (2016). A review on the pharmacological effectsof vitexin and isovitexin. Fitoterapia115: 74–85

[38]

Hicks M ABarber  A E 2nd, Giddings  L ACaldwell  JO’Connor S E Babbitt P C (2011). The evolution of function in strictosidine synthase-like proteins. Proteins79(11): 3082–3098

[39]

Isaacson TDamasceno  C M BSaravanan  R SHe  YCatalá C Saladié M Rose J K (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc1(2): 769–774

[40]

Ishihara AOgura  YTebayashi S Iwamura H (2002). Jasmonate-induced changes in flavonoid metabolism inbarley (Hordeum vulgare) leaves. Biosci Biotechnol Biochem66(10): 2176–2182

[41]

Ishikawa FHaushalter  R WBurkart  M D (2012). Dehydratase-specific probes for fatty acid and polyketide synthases. J Am Chem Soc134(2): 769–772

[42]

Jiménez C R Huang L Qiu YBurlingame  A L (2001). Searching sequence databases overthe internet: protein identification using MS-Fit. Curr Protoc Protein SciChapter 16: 5

[43]

Kaltenbach MSchröder  GSchmelzer E Lutz VSchröder  J (1999). Flavonoid hydroxylase from Catharanthus roseus: cDNA,heterologous expression, enzyme properties and cell-type specificexpression in plants. Plant J19(2): 183–193

[44]

Kašparová M Siatka T (2014). Production of flavonoids and isoflavonoids in jasmonic acid-induced red clover suspension cultures. Ceska Slov Farm63(1): 17–21

[45]

Kerscher FFranz  G (1987). Biosynthesis of Vitexin and Isovitexin : Enzymatic Synthesis of theC-Glucosylflavones Vitexin and Isovitexin with an Enzyme Preparationfrom Fagopyrum esculentum M. Seedlings. Z Naturforsch C42: 519–524

[46]

Kramell RMiersch  OAtzorn R Parthier B Wasternack C (2000). Octadecanoid-derived alteration of gene expression andthe “oxylipin signature” in stressed barley leaves. Implicationsfor different signaling pathways. Plant Physiol123(1): 177–188

[47]

Laemmli U K (1970). Cleavage of structural proteins duringthe assembly of the head of bacteriophage T4. Nature227(5259): 680–685

[48]

Le Roy JHuss  BCreach A Hawkins S Neutelings G (2016). Glycosylation Is a Major Regulator of Phenylpropanoid Availability and BiologicalActivity in Plants. Front Plant Sci7: 735

[49]

Li YDodge  G JFiers  W DFecik  R ASmith  J LAldrich  C C (2015). Functional Characterization of aDehydratase Domain from the Pikromycin Polyketide Synthase. J Am Chem Soc137(22): 7003–7006

[50]

Luley-Goedl CNidetzky  B (2011). Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep28(5): 875–896

[51]

Lussier F XColatriano  DWiltshire Z Page J E Martin V J J (2013). Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J3(4): e201210020

[52]

Martens SMithöfer  A (2005). Flavones and flavone synthases. Phytochemistry66(20): 2399–2407

[53]

Mierziak JKostyn  KKulma A (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules19(10): 16240–16265

[54]

Misbah HAziz  A AAminudin  N (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med13(1): 118

[55]

Mizutani MSato  F (2011). Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys507(1): 194–203

[56]

Mohd K SRosli  A SAzemin  AMat N Zakaria A J (2016). Comprehensive Biological Activities Evaluation and Quantification of Marker Compoundsof Ficus deltoiea Jack Varieties. Int J Pharmacogn Phytochem Res8: 1698–1708

[57]

Morant MBak  SMøller B L Werck-Reichhart D (2003). Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol14(2): 151–162

[58]

Nagatomo YUsui  SIto T Kato AShimosaka  MTaguchi G (2014). Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J80(3): 437–448

[59]

Pauwels LInzé  DGoossens A (2009). Jasmonate-inducible gene: What does it mean? Trends Plant Sci14(2): 87–91

[60]

Praveena RSadasivam  KKumaresan R Deepha V Sivakumar R (2013). Experimental and DFT studies on the antioxidant activityof a C-glycoside from Rhynchosia capitata. Spectrochim Acta A Mol Biomol Spectrosc103: 442–452

[61]

Rawat PKumar  MSharan K Chattopadhyay N Maurya R (2009). Ulmosides A and B: flavonoid 6-C-glycosides from Ulmus wallichiana, stimulatingosteoblast differentiation assessed by alkaline phosphatase. Bioorg Med Chem Lett19(16): 4684–4687

[62]

Saito KYonekura-Sakakibara  KNakabayashi R Higashi Y Yamazaki M Tohge T Fernie A R (2013). The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem72: 21–34

[63]

Schaller F (2001). Enzymes of the biosynthesis of octadecanoid-derivedsignalling molecules. J Exp Bot52(354): 11–23

[64]

Shafaei AFarsi  EIsmail Z Asmawi M Z (2012). Quantitative High Performance Thin-Layer ChromatographyMethod for Analysis of Vitexin and Isovitexin in Extracts of Leavesof Ficus deltoidea. Asian J Chem24: 2286

[65]

Shevchenko ATomas  HHavlis J Olsen J V Mann M (2006). In-geldigestion for mass spectrometric characterization of proteins andproteomes. Nat Protoc1(6): 2856–2860

[66]

Stafford H A (1991). Flavonoid evolution: an enzymic approach. Plant Physiol96(3): 680–685

[67]

University of California (2017). Ms-Fit. Available at: 

[68]

Väisänen E E Smeds A I Fagerstedt K V Teeri T H Willför S M Kärkönen A (2015). Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotianabenthamiana seedlings. Planta242(3): 747–760

[69]

Wu JZaleski  T JValenzano  CKhosla C Cane D E (2005). Polyketide double bond biosynthesis. Mechanistic analysis of thedehydratase-containing module 2 of the picromycin/methymycin polyketidesynthase. J Am Chem Soc127(49): 17393–17404

[70]

Xiao JCapanoglu  EJassbi A R Miron A (2016). Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr56(sup1 Suppl 1): S29–S45

[71]

Xiao JChen  TCao H (2015). Flavonoid glycosylation and biological benefits. Biotechnol Adv

[72]

Xu FLi  LZhang W Cheng H Sun NCheng  SWang Y (2012). Isolation, characterization, and function analysis of a flavonolsynthase gene from Ginkgo biloba. Mol Biol Rep39(3): 2285–2296

[73]

Yang C QFang  XWu X M Mao Y B Wang L J Chen X Y (2012). Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol54(10): 703–712

[74]

Yonekura-Sakakibara K Hanada K (2011). An evolutionary view of functional diversity in family1 glycosyltransferases. Plant J66(1): 182–193

[75]

Yonekura-Sakakibara K Tohge T Matsuda F Nakabayashi R Takayama H Niida R Watanabe-Takahashi A Inoue E Saito K (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leadingto decoding gene-metabolite correlations in Arabidopsis. Plant Cell20(8): 2160–2176

[76]

Zhai RWang  ZZhang S Meng GSong  LWang Z Li PMa  FXu L (2016). Two MYB transcription factors regulate flavonoid biosynthesis inpear fruit (Pyrus bretschneideri Rehd.). J Exp Bot67(5): 1275–1284

[77]

Zhang XAbrahan  CColquhoun T A Liu C and Sciences A (2017). A proteolytic regulator controlling chalcone synthasestability and flavonoid biosynthesis in ArabidopsisPlant Cell Online, tpc-00855

[78]

Zhao JDavis  L CVerpoorte  R (2005). Elicitor signal transductionleading to production of plant secondary metabolites. Biotechnol Adv23(4): 283–333

[79]

Zunoliza AKhalid  HZhari I Rasadah M A (2009). Anti-inflammatory activity of standardised extractsof leaves of three varieties of Ficus deltoidea. Int J Pharm Clin Res1: 100–105

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (552KB)

1282

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/