Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study
Received date: 12 Jun 2017
Accepted date: 16 Sep 2017
Published date: 20 Nov 2017
Copyright
BACKGROUND: Immune thrombocytopenic purpura (ITP) is a common autoimmune disorder diagnosed with thrombocytopenia and bleeding symptoms due to production of autoantibodies (Abs) against platelets. Nowadays, microRNAs are known as novel biomarkers for diagnosis of diseases. The aim of this study was to investigate the expression levels of miR-21 and miR-150 in ITP patients and determine the role of these miRNAs in ITP pathogenesis.
MATERIALS and METHODS:Thirty newly diagnosed patients with acute ITP and 30 healthy subjects( age and sex matched) as controls were enrolled in this study. The expression level of miR-21 and miR-150 was investigated using Real-time-PCR. Comparison of demographic characteristics of the cases was done using independentt-test and chi-square test. Comparison of the expression level of miR-21 and miR-150 with the related parameters was done using independentt-test or Mann–Whitney and Kruskal–Wallis test. Spearman rho correlation coefficient was used to investigate the relationship between the expression of miR-21 and miR-150 with demographic characteristics.
RESULTS: The expression of miR-21, 150 in the patients was not different compared with the control group in general. A significant relationship between the expression of miR-21 with hemoglobin, hematocrit and red blood cell hemoglobin concentration was observed.
DISCUSSION: Expression of miR-21 and miR-150 is not associated with pathogenesis of acute ITP and can involve the synergistic role of other miRNAs. Investigation of miR-21 and miR-150 expression along with other miRNAs and cytokines can be helpful in diagnosis and pathogenesis of ITP.
Key words: immune thrombocytopenic purpura; miR-21; miR-150
Elahe Khodadi , Ali Amin Asnafi , Javad Mohammadi-Asl , Seyed Ahmad Hosseini , Amal Saki Malehi , Najmaldin Saki . Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study[J]. Frontiers in Biology, 2017 , 12(5) : 361 -369 . DOI: 10.1007/s11515-017-1466-y
6 |
Anindo M I, Yaqinuddin A (2012). Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg, 10(9): 443–449
|
17 |
Babashah S, Sadeghizadeh M, Tavirani M R , Farivar S , Soleimani M (2012). Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr), 35(5): 317–334160;
|
14 |
Bai H, Xu R, Cao Z , Wei D, Wang C (2011). Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett, 585(2): 402–408
|
9 |
Bay A, Coskun E, Oztuzcu S , Ergun S , Yilmaz F , Aktekin E (2014). Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis, 25(4): 379–383
|
19 |
Bustin S A, Benes V, Garson J A , Hellemans J , Huggett J , Kubista M , Mueller R , Nolan T , Pfaffl M W , Shipley G L , Vandesompele J , Wittwer C T (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55(4): 611–622160;
|
13 |
Dai Y, Huang Y S, Tang M, Lv T Y , Hu C X , Tan Y H , Xu Z M , Yin Y B (2007). Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus, 16(12): 939–946160;
|
8 |
Edelstein L C , Bray P F (2011). MicroRNAs in platelet production and activation. Blood, 117(20): 5289–5296160;
|
26 |
Edelstein L C , Bray P F (2011). MicroRNAs in platelet production and activation. Blood, 117(20): 5289–5296
|
16 |
Ghisi M, Corradin A, Basso K , Frasson C , Serafin V , Mukherjee S , Mussolin L , Ruggero K , Bonanno L , Guffanti A , De Bellis G , Gerosa G , Stellin G , D’Agostino D M , Basso G , Bronte V , Indraccolo S , Amadori A , Zanovello P (2011). Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood, 117(26): 7053–7062160;
|
10 |
Gordon J E, Wong J J, Rasko J E (2013). MicroRNAs in myeloid malignancies. Br J Haematol, 162(2): 162–176
|
4 |
Heyns Adu P, Badenhorst P N, Lötter M G, Pieters H, Wessels P , Kotzé H F (1986). Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood, 67(1): 86–92
|
28 |
Hussein K, Theophile K, Büsche G , Schlegelberger B , Göhring G , Kreipe H , Bock O (2010). Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res, 34(3): 328–334160;
|
29 |
Jernås M, Nookaew I, Wadenvik H , Olsson B (2013). MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP). Blood, 121(11): 2095–2098
|
23 |
Johnsen J(2012). Pathogenesis in immune thrombocytopenia: new insights. Hematology Am Soc Hematol Educ Program, 2012(1): 306–312
|
2 |
Khodadi E, Asnafi A A, Shahrabi S, Shahjahani M , Saki N (2016). Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol, 95(11): 1765–1776
|
1 |
Ku F C, Tsai C R, Der Wang J, Wang C H , Chang T K , Hwang W L (2013). Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol, 90(1): 25–30
|
15 |
Li H, Zhao H, Wang D , Yang R (2011). microRNA regulation in megakaryocytopoiesis. Br J Haematol, 155(3): 298–307
|
25 |
Machlus K R, Thon J N, Italiano J E Jr(2014). Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol, 165(2): 227–236
|
20 |
Naderi M, Abdul T H, Soleimani M, Shabani I , Hashemi S M (2015). A Home-brew Real-time PCR Assay for Reliable Detection and Quantification of Mature miR-122. Appl Immunohistochem Mol Morphol, 23(8): 601–606
|
21 |
Pfaffl M W, Horgan G W, Dempfle L (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 30(9): e36
|
3 |
Rank A, Weigert O, Ostermann H (2010). Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biologics, 4: 139–145160;
|
18 |
Rodeghiero F, Stasi R, Gernsheimer T , Michel M , Provan D , Arnold D M , Bussel J B , Cines D B , Chong B H , Cooper N , Godeau B , Lechner K , Mazzucconi M G , McMillan R , Sanz M A , Imbach P , Blanchette V , Kühne T , Ruggeri M , George J N (2009). Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood, 113(11): 2386–2393
|
12 |
Rossi S, Shimizu M, Barbarotto E , Nicoloso M S , Dimitri F , Sampath D , Fabbri M , Lerner S , Barron L L , Rassenti L Z , Jiang L , Xiao L, Hu J, Secchiero P , Zauli G , Volinia S , Negrini M , Wierda W , Kipps T J , Plunkett W , Coombes K R , Abruzzo L V , Keating M J , Calin G A (2010). microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood, 116(6): 945–952
|
22 |
Saki N, Abroun S, Soleimani M , Mortazavi Y , Kaviani S , Arefian E (2014). The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology, 19(3): 141–147160;
|
5 |
Shah P P, Hutchinson L E, Kakar S S (2009). Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer. J Ovarian Res, 2(1): 11160;
|
11 |
Stasi R (2012). Immune thrombocytopenia: Pathophysiologic and clinical update. Semin Thromb Hemost, 38: 454–462
|
30 |
Tavakoli F, Jaseb K, Jalali Far M A , Soleimani M , Khodadi E , Saki N (2016). Evaluation of MicroRNA-146a expression in acute lymphoblastic Leukemia. Front Biol, 22: 1–6
|
27 |
Wang M, Tan L P, Dijkstra M K, van Lom K, Robertus J L , Harms G , Blokzijl T , Kooistra K , van T’veer M B , Rosati S , Visser L , Jongen-Lavrencic M , Kluin P M , van den Berg A (2008). miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol, 215(1): 13–20160;
|
24 |
Zhou B, Zhao H, Yang R C , Han Z C (2005). Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol, 54(2): 107–116160;
|
7 |
Zhu C, Wang Y, Kuai W , Sun X, Chen H, Hong Z (2013). Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem, 46(1-2): 49–53160;
|
/
〈 | 〉 |