Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study

Elahe Khodadi , Ali Amin Asnafi , Javad Mohammadi-Asl , Seyed Ahmad Hosseini , Amal Saki Malehi , Najmaldin Saki

Front. Biol. ›› 2017, Vol. 12 ›› Issue (5) : 361 -369.

PDF (1575KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (5) : 361 -369. DOI: 10.1007/s11515-017-1466-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study

Author information +
History +
PDF (1575KB)

Abstract

BACKGROUND: Immune thrombocytopenic purpura (ITP) is a common autoimmune disorder diagnosed with thrombocytopenia and bleeding symptoms due to production of autoantibodies (Abs) against platelets. Nowadays, microRNAs are known as novel biomarkers for diagnosis of diseases. The aim of this study was to investigate the expression levels of miR-21 and miR-150 in ITP patients and determine the role of these miRNAs in ITP pathogenesis.

MATERIALS and METHODS:Thirty newly diagnosed patients with acute ITP and 30 healthy subjects( age and sex matched) as controls were enrolled in this study. The expression level of miR-21 and miR-150 was investigated using Real-time-PCR. Comparison of demographic characteristics of the cases was done using independentt-test and chi-square test. Comparison of the expression level of miR-21 and miR-150 with the related parameters was done using independentt-test or Mann–Whitney and Kruskal–Wallis test. Spearman rho correlation coefficient was used to investigate the relationship between the expression of miR-21 and miR-150 with demographic characteristics.

RESULTS: The expression of miR-21, 150 in the patients was not different compared with the control group in general. A significant relationship between the expression of miR-21 with hemoglobin, hematocrit and red blood cell hemoglobin concentration was observed.

DISCUSSION: Expression of miR-21 and miR-150 is not associated with pathogenesis of acute ITP and can involve the synergistic role of other miRNAs. Investigation of miR-21 and miR-150 expression along with other miRNAs and cytokines can be helpful in diagnosis and pathogenesis of ITP.

Keywords

immune thrombocytopenic purpura / miR-21 / miR-150

Cite this article

Download citation ▾
Elahe Khodadi, Ali Amin Asnafi, Javad Mohammadi-Asl, Seyed Ahmad Hosseini, Amal Saki Malehi, Najmaldin Saki. Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study. Front. Biol., 2017, 12(5): 361-369 DOI:10.1007/s11515-017-1466-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anindo M IYaqinuddin  A (2012). Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg10(9): 443–449

[2]

Babashah SSadeghizadeh  MTavirani M R Farivar S Soleimani M  (2012). Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr)35(5): 317–334160;

[3]

Bai HXu  RCao Z Wei DWang  C (2011). Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett585(2): 402–408

[4]

Bay ACoskun  EOztuzcu S Ergun S Yilmaz F Aktekin E  (2014). Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis25(4): 379–383

[5]

Bustin S ABenes  VGarson J A Hellemans J Huggett J Kubista M Mueller R Nolan T Pfaffl M W Shipley G L Vandesompele J Wittwer C T  (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem55(4): 611–622160;

[6]

Dai YHuang  Y STang  MLv T Y Hu C X Tan Y H Xu Z M Yin Y B  (2007). Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus16(12): 939–946160;

[7]

Edelstein L C Bray P F  (2011). MicroRNAs in platelet production and activation. Blood117(20): 5289–5296160;

[8]

Edelstein L C Bray P F  (2011). MicroRNAs in platelet production and activation. Blood117(20): 5289–5296

[9]

Ghisi MCorradin  ABasso K Frasson C Serafin V Mukherjee S Mussolin L Ruggero K Bonanno L Guffanti A De Bellis G Gerosa G Stellin G D’Agostino D M Basso G Bronte V Indraccolo S Amadori A Zanovello P  (2011). Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood117(26): 7053–7062160;

[10]

Gordon J EWong  J JRasko  J E (2013). MicroRNAs in myeloid malignancies. Br J Haematol162(2): 162–176

[11]

Heyns Adu PBadenhorst  P NLötter  M GPieters  HWessels P Kotzé H F  (1986). Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood67(1): 86–92

[12]

Hussein KTheophile  KBüsche G Schlegelberger B Göhring G Kreipe H Bock O (2010). Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res34(3): 328–334160;

[13]

Jernås MNookaew  IWadenvik H Olsson B  (2013). MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP). Blood121(11): 2095–2098

[14]

Johnsen J(2012). Pathogenesis in immune thrombocytopenia: new insights. Hematology Am Soc Hematol Educ Program2012(1): 306–312

[15]

Khodadi EAsnafi  A AShahrabi  SShahjahani M Saki N (2016). Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol95(11): 1765–1776

[16]

Ku F CTsai  C RDer Wang  JWang C H Chang T K Hwang W L  (2013). Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol90(1): 25–30

[17]

Li HZhao  HWang D Yang R (2011). microRNA regulation in megakaryocytopoiesis. Br J Haematol155(3): 298–307

[18]

Machlus K RThon  J NItaliano  J E Jr(2014). Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol165(2): 227–236

[19]

Naderi MAbdul  T HSoleimani  MShabani I Hashemi S M  (2015). A Home-brew Real-time PCR Assay for Reliable Detection and Quantification of Mature miR-122. Appl Immunohistochem Mol Morphol23(8): 601–606

[20]

Pfaffl M WHorgan  G WDempfle  L (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res30(9): e36

[21]

Rank AWeigert  OOstermann H  (2010). Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biologics4: 139–145160;

[22]

Rodeghiero FStasi  RGernsheimer T Michel M Provan D Arnold D M Bussel J B Cines D B Chong B H Cooper N Godeau B Lechner K Mazzucconi M G McMillan R Sanz M A Imbach P Blanchette V Kühne T Ruggeri M George J N  (2009). Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood113(11): 2386–2393

[23]

Rossi SShimizu  MBarbarotto E Nicoloso M S Dimitri F Sampath D Fabbri M Lerner S Barron L L Rassenti L Z Jiang L Xiao LHu  JSecchiero P Zauli G Volinia S Negrini M Wierda W Kipps T J Plunkett W Coombes K R Abruzzo L V Keating M J Calin G A  (2010). microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood116(6): 945–952

[24]

Saki NAbroun  SSoleimani M Mortazavi Y Kaviani S Arefian E  (2014). The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology19(3): 141–147160;

[25]

Shah P PHutchinson  L EKakar  S S (2009). Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer. J Ovarian Res2(1): 11160;

[26]

Stasi R (2012). Immune thrombocytopenia: Pathophysiologic and clinical update. Semin Thromb Hemost38: 454–462

[27]

Tavakoli FJaseb  KJalali Far M A Soleimani M Khodadi E Saki N (2016). Evaluation of MicroRNA-146a expression in acute lymphoblastic Leukemia. Front Biol22: 1–6

[28]

Wang MTan  L PDijkstra  M Kvan Lom  KRobertus J L Harms G Blokzijl T Kooistra K van T’veer M B Rosati S Visser L Jongen-Lavrencic M Kluin P M van den Berg A  (2008). miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol215(1): 13–20160;

[29]

Zhou BZhao  HYang R C Han Z C  (2005). Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol54(2): 107–116160;

[30]

Zhu CWang  YKuai W Sun XChen  HHong Z  (2013). Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem46(1-2): 49–53160;

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1575KB)

1024

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/