Illuminating the structure and dynamics of chromatin by fluorescence labeling
Received date: 27 Feb 2017
Accepted date: 05 Apr 2017
Published date: 13 Sep 2017
Copyright
BACKGROUND: Visualization of chromosomal loci location and dynamics is crucial for understanding many fundamental intra-nuclear processes such as DNA transcription, replication, and repair.
OBJECTIVE: Here, we will describe the development of fluorescence labeling methods for chromatin imaging, including traditional as well as emerging chromatin labeling techniques in both fixed and live cells. We will also discuss current issues and provide a perspective on future developments and applications of the chromatin labeling technology.
METHODS: A systematic literature search was performed using the PubMed. Studies published over the past 50 years were considered for review. More than 100 articles were cited in this review.
RESULTS: Taking into account sensitivity, specificity, and spatiotemporal resolution, fluorescence labeling and imaging has been the most prevalent approach for chromatin visualization. Among all the fluorescent labeling tools, the adoption of genome editing tools, such as TALE and CRISPR, have great potential for the labeling and imaging of chromatin.
CONCLUSION: Although a number of chromatin labeling techniques are available for both fixed and live cells, much more effort is still clearly required to develop fluorescence labeling methods capable of targeting arbitrary sequences non-intrusively to allow long-term, multiplexing, and high-throughput imaging of genomic loci and chromatin structures. The emerging technological advances will outline a next-generation effort toward the comprehensive delineation of chromatin at single-cell level with single-molecule resolution.
Shipeng Shao , Lei Chang , Yingping Hou , Yujie Sun . Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Frontiers in Biology, 2017 , 12(4) : 241 -257 . DOI: 10.1007/s11515-017-1454-2
1 |
Abney J R, Cutler B, Fillbach M L, Axelrod D, Scalettar B A (1997). Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol, 137(7): 1459–1468
|
2 |
Aizer A, Brody Y, Ler L W, Sonenberg N, Singer R H, Shav-Tal Y (2008). The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell, 19(10): 4154–4166
|
3 |
Backlund M P, Joyner R, Weis K, Moerner W E (2014). Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Mol Biol Cell, 25(22): 3619–3629
|
4 |
Badique F, Stamov D R, Davidson P M, Veuillet M, Reiter G, Freund J N, Franz C M, Anselme K (2013). Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials, 34(12): 2991–3001
|
5 |
Beliveau B J, Boettiger A N, Avendaño M S, Jungmann R, McCole R B, Joyce E F, Kim-Kiselak C, Bantignies F, Fonseka C Y, Erceg J, Hannan M A, Hoang H G, Colognori D, Lee J T, Shih W M, Yin P, Zhuang X, Wu C T (2015). Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun, 6: 7147
|
6 |
Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA, 109(52): 21301–21306
|
7 |
Belmont A S (2001). Visualizing chromosome dynamics with GFP. Trends Cell Biol, 11(6): 250–257
|
8 |
Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4): 437–445
|
9 |
Bick M D, Davidson R L (1974). Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci USA, 71(5): 2082–2086
|
10 |
Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A (2013). A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods, 10(2): 122–124
|
11 |
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959): 1509–1512
|
12 |
Boettiger A N, Bintu B, Moffitt J R, Wang S, Beliveau B J, Fudenberg G, Imakaev M, Mirny L A, Wu C T, Zhuang X (2016). Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature, 529(7586): 418–422
|
13 |
Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann D W, Cremer C (2010). Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J, 99(5): 1358–1367
|
14 |
Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher M R, Cremer T (2005). Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol, 3(5): e157
|
15 |
Chacón M R, Delivani P, Tolić I M (2016). Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations. Cell Reports, 17(6): 1632–1645 160;
|
16 |
Chakalova L, Fraser P (2008). Brushed aside and silenced. Dev Cell, 14(4): 461–462
|
17 |
Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491
|
18 |
Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim W A, Huang B (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res, 44(8): e75
|
19 |
Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W, Janetopoulos C, Wu X S, Hammer J A 3rd, Liu Z, English B P, Mimori-Kiyosue Y, Romero D P, Ritter A T, Lippincott-Schwartz J, Fritz-Laylin L, Mullins R D, Mitchell D M, Bembenek J N, Reymann A C, Böhme R, Grill S W, Wang J T, Seydoux G, Tulu U S, Kiehart D P, Betzig E (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208): 1257998
|
20 |
Cheng A W, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res, 26(2): 254–257
|
21 |
Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831
|
22 |
Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T (2008). Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol, 463: 205–239
|
23 |
Cremer T, Cremer C (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2(4): 292–301
|
24 |
Cremer T, Kreth G, Koester H, Fink R H, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000). Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr, 10(2): 179–212
|
25 |
Daigle N, Ellenberg J (2007). LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods, 4(8): 633–636
|
26 |
Dekker J,
|
27 |
Dekker J, Mirny L (2016). The 3D Genome as Moderator of Chromosomal Communication. Cell, 164(6): 1110–1121
|
28 |
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244
|
29 |
Deng W, Shi X, Tjian R, Lionnet T, Singer R H (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci USA, 112(38): 11870–11875
|
30 |
Dixon J R, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J S, Ren B (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398): 376–380
|
31 |
Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121
|
32 |
Fabre P J,
|
33 |
Fanucchi S, Shibayama Y, Burd S, Weinberg M S, Mhlanga M M (2013). Chromosomal contact permits transcription between coregulated genes. Cell, 155(3): 606–620
|
34 |
Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039
|
35 |
Fujita T, Fujii H (2013). Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun, 439(1): 132–136
|
36 |
Gall J G, Pardue M L (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA, 63(2): 378–383
|
37 |
Gebhardt J C, Suter D M, Roy R, Zhao Z W, Chapman A R, Basu S, Maniatis T, Xie X S (2013). Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods, 10(5): 421–426
|
38 |
Gilbert W, Müller-Hill B (1966). Isolation of the lac repressor. Proc Natl Acad Sci USA, 56(6): 1891–1898
|
39 |
Gratzner H G (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218(4571): 474–475
|
40 |
Grimm J B, English B P, Chen J, Slaughter J P, Zhang Z, Revyakin A, Patel R, Macklin J J, Normanno D, Singer R H, Lionnet T, Lavis L D (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods, 12(3): 244–250, 3, 250
|
41 |
Guan J, Liu H, Shi X, Feng S, Huang B (2017). Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys J, 112(6): 1077–1084
|
42 |
Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin D U, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang M Q, Ren B, Krainer A R, Maniatis T, Wu Q (2015). CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell, 162(4): 900–910
|
43 |
Held M, Schmitz M H, Fischer B, Walter T, Neumann B, Olma M H, Peter M, Ellenberg J, Gerlich D W (2010). CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods, 7(9): 747–754
|
44 |
Hillen W, Klock G, Kaffenberger I, Wray L V, Reznikoff W S (1982). Purification of the TET repressor and TET operator from the transposon Tn10 and characterization of their interaction. J Biol Chem, 257(11): 6605–6613
|
45 |
Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170
|
46 |
Hsu P D, Lander E S, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6): 1262–1278
|
47 |
Hu H, Zhang H, Wang S, Ding M, An H, Hou Y, Yang X, Wei W, Sun Y, Tang C (2017). Live visualization of genomic loci with BiFC-TALE. Sci Rep, 7: 40192
|
48 |
Hübner M R, Spector D L (2010). Chromatin dynamics. Annu Rev Biophys, 39(1): 471–489
|
49 |
Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert L A, Ishikawa H, Leonetti M D, Marshall W F, Weissman J S, Huang B (2016). Versatile protein tagging in cells with split fluorescent protein. Nat Commun, 7: 11046
|
50 |
Kanda T, Sullivan K F, Wahl G M (1998). Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol, 8(7): 377–385
|
51 |
Kapuscinski J (1995). DAPI: a DNA-specific fluorescent probe. Biotech Histochem, 70(5): 220–233
|
52 |
Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y (2015). Uniform Contraction-Expansion Description of Relative Centromere and Telomere Motion. Biophys J, 109(7): 1454–1462
|
53 |
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192
|
54 |
Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65
|
55 |
Kumaran R I, Thakar R, Spector D L (2008). Chromatin dynamics and gene positioning. Cell, 132(6): 929–934
|
56 |
Langer-Safer P R, Levine M, Ward D C (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA, 79(14): 4381–4385
|
57 |
Larson D R, Zenklusen D, Wu B, Chao J A, Singer R H (2011). Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science, 332(6028): 475–478
|
58 |
Levi V, Ruan Q, Plutz M, Belmont A S, Gratton E (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J, 89(6): 4275–4285
|
59 |
Levine M (2014). The contraction of time and space in remote chromosomal interactions. Cell, 158(2): 243–244
|
60 |
Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838
|
61 |
Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A 3rd, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E (2015). ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251): aab3500
|
62 |
Li J, Zhang B B, Ren Y G, Gu S Y, Xiang Y H, Du J L (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res, 25(5): 634–637
|
63 |
Lindhout B I, Fransz P, Tessadori F, Meckel T, Hooykaas P J, van der Zaal B J (2007). Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res, 35(16): e107
|
64 |
Lottersberger F, Karssemeijer R A, Dimitrova N, de Lange T (2015). 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA Repair. Cell, 163(4): 880–893
|
65 |
Lucas J S, Zhang Y, Dudko O K, Murre C (2014). 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell, 158(2): 339–352
|
66 |
Ma H, Naseri A, Reyes-Gutierrez P, Wolfe S A, Zhang S, Pederson T (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA, 112(10): 3002–3007
|
67 |
Ma H, Reyes-Gutierrez P, Pederson T (2013). Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci USA, 110(52): 21048–21053
|
68 |
Ma H, Tu L C, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol, 34(5): 528–530
|
69 |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
|
70 |
Marshall W F, Straight A, Marko J F, Swedlow J, Dernburg A, Belmont A, Murray A W, Agard D A, Sedat J W (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol, 7(12): 930–939
|
71 |
Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T, Murphy N, Hupé P, Barillot E, Belmont A S, Heard E (2011). Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell, 145(3): 447–458
|
72 |
Meaburn K J, Misteli T (2007). Cell biology: chromosome territories. Nature, 445(7126): 379–781
|
73 |
Meldi L, Brickner J H (2011). Compartmentalization of the nucleus. Trends Cell Biol, 21(12): 701–708
|
74 |
Miyanari Y (2014). TAL effector-mediated genome visualization (TGV). Methods, 69(2): 198–204
|
75 |
Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324
|
76 |
Nelles D A, Fang M Y, O’Connell M R, Xu J L, Markmiller S J, Doudna J A, Yeo G W (2016). Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165(2): 488–496
|
77 |
Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011). The dynamic architecture of Hox gene clusters. Science, 334(6053): 222–225
|
78 |
Nora E P, Lajoie B R, Schulz E G, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum N L, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485(7398): 381–385
|
79 |
O’Connell M R, Oakes B L, Sternberg S H, East-Seletsky A, Kaplan M, Doudna J A (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530): 263–266
|
80 |
Ochiai H, Sugawara T, Yamamoto T (2015). Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res, 43(19): e127
|
81 |
Pederson T (2014). Repeated TALEs: visualizing DNA sequence localization and chromosome dynamics in live cells. Nucleus, 5(1): 28–31
|
82 |
Pope B D, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera D L, Wang Y, Hansen R S, Canfield T K, Thurman R E, Cheng Y, Gülsoy G, Dennis J H, Snyder M P, Stamatoyannopoulos J A, Taylor J, Hardison R C, Kahveci T, Ren B, Gilbert D M (2014). Topologically associating domains are stable units of replication-timing regulation. Nature, 515(7527): 402–405
|
83 |
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun, 8: 14725
|
84 |
Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546): 186–191
|
85 |
Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247
|
86 |
Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, Yang F, Ju Z, Ren X, Wang S, Tang H, Geng L, Zhang W, Li J, Qiao J, Xu T, Qu J, Liu G H (2017). Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res, 27(4): 483–504
|
87 |
Ricci M A, Manzo C, García-Parajo M F, Lakadamyali M, Cosma M P (2015). Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell, 160(6): 1145–1158
|
88 |
Ried T, Schröck E, Ning Y, Wienberg J (1998). Chromosome painting: a useful art. Hum Mol Genet, 7(10): 1619–1626
|
89 |
Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700
|
90 |
Roukos V, Voss T C, Schmidt C K, Lee S, Wangsa D, Misteli T (2013). Spatial dynamics of chromosome translocations in living cells. Science, 341(6146): 660–664
|
91 |
Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K (2014). DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet, 10(3): e1004187
|
92 |
Salic A, Mitchison T J (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA, 105(7): 2415–2420
|
93 |
Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336
|
94 |
Segal D J, Dreier B, Beerli R R, Barbas C F 3rd (1999). Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA, 96(6): 2758–2763
|
95 |
Shachar S, Voss T C, Pegoraro G, Sciascia N, Misteli T (2015). Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell, 162(4): 911–923
|
96 |
Shalem O, Sanjana N E, Zhang F (2015). High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 16(5): 299–311
|
97 |
Shao S,
|
98 |
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res, 44(9): e86
|
99 |
Shechner D M, Hacisuleyman E, Younger S T, Rinn J L (2015). Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods, 12(7): 664–670
|
100 |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
|
101 |
Smeets D, Markaki Y, Schmid V J, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M (2014). Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin, 7(1): 8
|
102 |
Solovei I, Cremer M (2010). 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol, 659: 117–126
|
103 |
Soutoglou E, Dorn J F, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007). Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol, 9(6): 675–682
|
104 |
Strack R L, Disney M D, Jaffrey S R (2013). A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods, 10(12): 1219–1224
|
105 |
Tagarro I, Fernández-Peralta A M, González-Aguilera J J (1994). Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet, 93(4): 383–388
|
106 |
Takei Y, Shah S, Harvey S, Qi L S, Cai L (2017). Multiplexed dynamic imaging of genomic loci in single cells by combined CRISPR imaging and DNA sequential FISH. Biophy J, 112(9): 1773–1776
|
107 |
Tanenbaum M E, Gilbert L A, Qi L S, Weissman J S, Vale R D (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3): 635–646
|
108 |
Tang Z, Luo O J, Li X, Zheng M, Zhu J J, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian S Z, Penrad-Mobayed M, Sachs L M, Ruan X, Wei C L, Liu E T, Wilczynski G M, Plewczynski D, Li G, Ruan Y (2015). CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell, 163(7): 1611–1627
|
109 |
Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, Bultmann S, Leonhardt H (2014). Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res, 42(6): e38
|
110 |
Therizols P, Illingworth R S, Courilleau C, Boyle S, Wood A J, Bickmore W A (2014). Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science, 346(6214): 1238–1242
|
111 |
Tsukamoto T, Hashiguchi N, Janicki S M, Tumbar T, Belmont A S, Spector D L (2000). Visualization of gene activity in living cells. Nat Cell Biol, 2(12): 871–878
|
112 |
Verdaasdonk J S, Vasquez P A, Barry R M, Barry T, Goodwin S, Forest M G, Bloom K (2013). Centromere tethering confines chromosome domains. Mol Cell, 52(6): 819–831
|
113 |
Viollier P H, Thanbichler M, McGrath P T, West L, Meewan M, McAdams H H, Shapiro L (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25): 9257–9262
|
114 |
Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478
|
115 |
Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M (2015). Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep, 5: 15348
|
116 |
Waldman F M, Chew K, Ljung B M, Goodson W, Hom J, Duarte L A, Smith H S, Mayall B (1991). A comparison between bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Mod Pathol, 4(6): 718–722
|
117 |
Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang A P, Fang W, Ji W, Li W, Zhao X, Zhou Q (2015). One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res, 25(2): 258–261
|
118 |
Wang S, Su J H, Beliveau B J, Bintu B, Moffitt J R, Wu C T, Zhuang X (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353(6299): 598–602
|
119 |
Wang W, Li G W, Chen C, Xie X S, Zhuang X (2011). Chromosome organization by a nucleoid-associated protein in live bacteria. Science, 333(6048): 1445–1449
|
120 |
Wijchers P J, Krijger P H, Geeven G, Zhu Y, Denker A, Verstegen M J, Valdes-Quezada C, Vermeulen C, Janssen M, Teunissen H, Anink-Groenen L C, Verschure P J, de Laat W (2016). Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Mol Cell, 61(3): 461–473
|
121 |
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 25(1): 67–79
|
122 |
Zalatan J G, Lee M E, Almeida R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(1-2): 339–350
|
123 |
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie X S (2017). Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res, 27(2): 298–301
|
124 |
Zuleger N, Boyle S, Kelly D A, de las Heras J I, Lazou V, Korfali N, Batrakou D G, Randles K N, Morris G E, Harrison D J, Bickmore W A, Schirmer E C (2013). Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol, 14(2): R14
|
/
〈 | 〉 |