Illuminating the structure and dynamics of chromatin by fluorescence labeling
Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun
Illuminating the structure and dynamics of chromatin by fluorescence labeling
BACKGROUND: Visualization of chromosomal loci location and dynamics is crucial for understanding many fundamental intra-nuclear processes such as DNA transcription, replication, and repair.
OBJECTIVE: Here, we will describe the development of fluorescence labeling methods for chromatin imaging, including traditional as well as emerging chromatin labeling techniques in both fixed and live cells. We will also discuss current issues and provide a perspective on future developments and applications of the chromatin labeling technology.
METHODS: A systematic literature search was performed using the PubMed. Studies published over the past 50 years were considered for review. More than 100 articles were cited in this review.
RESULTS: Taking into account sensitivity, specificity, and spatiotemporal resolution, fluorescence labeling and imaging has been the most prevalent approach for chromatin visualization. Among all the fluorescent labeling tools, the adoption of genome editing tools, such as TALE and CRISPR, have great potential for the labeling and imaging of chromatin.
CONCLUSION: Although a number of chromatin labeling techniques are available for both fixed and live cells, much more effort is still clearly required to develop fluorescence labeling methods capable of targeting arbitrary sequences non-intrusively to allow long-term, multiplexing, and high-throughput imaging of genomic loci and chromatin structures. The emerging technological advances will outline a next-generation effort toward the comprehensive delineation of chromatin at single-cell level with single-molecule resolution.
chromatin structure and dynamics / FROS / FISH / TALE / CRISPR/Cas9 / single-guide RNA / Suntag / super-resolution imaging
[1] |
Abney J R, Cutler B, Fillbach M L, Axelrod D, Scalettar B A (1997). Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol, 137(7): 1459–1468
CrossRef
Pubmed
Google scholar
|
[2] |
Aizer A, Brody Y, Ler L W, Sonenberg N, Singer R H, Shav-Tal Y (2008). The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell, 19(10): 4154–4166
CrossRef
Pubmed
Google scholar
|
[3] |
Backlund M P, Joyner R, Weis K, Moerner W E (2014). Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Mol Biol Cell, 25(22): 3619–3629
CrossRef
Pubmed
Google scholar
|
[4] |
Badique F, Stamov D R, Davidson P M, Veuillet M, Reiter G, Freund J N, Franz C M, Anselme K (2013). Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials, 34(12): 2991–3001
CrossRef
Pubmed
Google scholar
|
[5] |
Beliveau B J, Boettiger A N, Avendaño M S, Jungmann R, McCole R B, Joyce E F, Kim-Kiselak C, Bantignies F, Fonseka C Y, Erceg J, Hannan M A, Hoang H G, Colognori D, Lee J T, Shih W M, Yin P, Zhuang X, Wu C T (2015). Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun, 6: 7147
CrossRef
Pubmed
Google scholar
|
[6] |
Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA, 109(52): 21301–21306
CrossRef
Pubmed
Google scholar
|
[7] |
Belmont A S (2001). Visualizing chromosome dynamics with GFP. Trends Cell Biol, 11(6): 250–257
CrossRef
Pubmed
Google scholar
|
[8] |
Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4): 437–445
CrossRef
Pubmed
Google scholar
|
[9] |
Bick M D, Davidson R L (1974). Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci USA, 71(5): 2082–2086
CrossRef
Pubmed
Google scholar
|
[10] |
Bienko M, Crosetto N, Teytelman L, Klemm S, Itzkovitz S, van Oudenaarden A (2013). A versatile genome-scale PCR-based pipeline for high-definition DNA FISH. Nat Methods, 10(2): 122–124
CrossRef
Pubmed
Google scholar
|
[11] |
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959): 1509–1512
CrossRef
Pubmed
Google scholar
|
[12] |
Boettiger A N, Bintu B, Moffitt J R, Wang S, Beliveau B J, Fudenberg G, Imakaev M, Mirny L A, Wu C T, Zhuang X (2016). Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature, 529(7586): 418–422
CrossRef
Pubmed
Google scholar
|
[13] |
Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann D W, Cremer C (2010). Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J, 99(5): 1358–1367
CrossRef
Pubmed
Google scholar
|
[14] |
Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher M R, Cremer T (2005). Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol, 3(5): e157
CrossRef
Pubmed
Google scholar
|
[15] |
Chacón M R, Delivani P, Tolić I M (2016). Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations. Cell Reports, 17(6): 1632–1645 160;
CrossRef
Pubmed
Google scholar
|
[16] |
Chakalova L, Fraser P (2008). Brushed aside and silenced. Dev Cell, 14(4): 461–462
CrossRef
Pubmed
Google scholar
|
[17] |
Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491
CrossRef
Pubmed
Google scholar
|
[18] |
Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim W A, Huang B (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res, 44(8): e75
CrossRef
Pubmed
Google scholar
|
[19] |
Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W, Janetopoulos C, Wu X S, Hammer J A 3rd, Liu Z, English B P, Mimori-Kiyosue Y, Romero D P, Ritter A T, Lippincott-Schwartz J, Fritz-Laylin L, Mullins R D, Mitchell D M, Bembenek J N, Reymann A C, Böhme R, Grill S W, Wang J T, Seydoux G, Tulu U S, Kiehart D P, Betzig E (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208): 1257998
CrossRef
Pubmed
Google scholar
|
[20] |
Cheng A W, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res, 26(2): 254–257
CrossRef
Pubmed
Google scholar
|
[21] |
Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831
CrossRef
Pubmed
Google scholar
|
[22] |
Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T (2008). Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol, 463: 205–239
CrossRef
Pubmed
Google scholar
|
[23] |
Cremer T, Cremer C (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2(4): 292–301
CrossRef
Pubmed
Google scholar
|
[24] |
Cremer T, Kreth G, Koester H, Fink R H, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000). Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr, 10(2): 179–212
CrossRef
Pubmed
Google scholar
|
[25] |
Daigle N, Ellenberg J (2007). LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods, 4(8): 633–636
CrossRef
Pubmed
Google scholar
|
[26] |
Dekker J,
|
[27] |
Dekker J, Mirny L (2016). The 3D Genome as Moderator of Chromosomal Communication. Cell, 164(6): 1110–1121
CrossRef
Pubmed
Google scholar
|
[28] |
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244
CrossRef
Pubmed
Google scholar
|
[29] |
Deng W, Shi X, Tjian R, Lionnet T, Singer R H (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci USA, 112(38): 11870–11875
CrossRef
Pubmed
Google scholar
|
[30] |
Dixon J R, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J S, Ren B (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398): 376–380
CrossRef
Pubmed
Google scholar
|
[31] |
Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121
CrossRef
Pubmed
Google scholar
|
[32] |
Fabre P J,
Pubmed
|
[33] |
Fanucchi S, Shibayama Y, Burd S, Weinberg M S, Mhlanga M M (2013). Chromosomal contact permits transcription between coregulated genes. Cell, 155(3): 606–620
CrossRef
Pubmed
Google scholar
|
[34] |
Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039
CrossRef
Pubmed
Google scholar
|
[35] |
Fujita T, Fujii H (2013). Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun, 439(1): 132–136
CrossRef
Pubmed
Google scholar
|
[36] |
Gall J G, Pardue M L (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA, 63(2): 378–383
CrossRef
Pubmed
Google scholar
|
[37] |
Gebhardt J C, Suter D M, Roy R, Zhao Z W, Chapman A R, Basu S, Maniatis T, Xie X S (2013). Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods, 10(5): 421–426
CrossRef
Pubmed
Google scholar
|
[38] |
Gilbert W, Müller-Hill B (1966). Isolation of the lac repressor. Proc Natl Acad Sci USA, 56(6): 1891–1898
CrossRef
Pubmed
Google scholar
|
[39] |
Gratzner H G (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218(4571): 474–475
CrossRef
Pubmed
Google scholar
|
[40] |
Grimm J B, English B P, Chen J, Slaughter J P, Zhang Z, Revyakin A, Patel R, Macklin J J, Normanno D, Singer R H, Lionnet T, Lavis L D (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods, 12(3): 244–250, 3, 250
CrossRef
Pubmed
Google scholar
|
[41] |
Guan J, Liu H, Shi X, Feng S, Huang B (2017). Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys J, 112(6): 1077–1084
CrossRef
Pubmed
Google scholar
|
[42] |
Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin D U, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang M Q, Ren B, Krainer A R, Maniatis T, Wu Q (2015). CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell, 162(4): 900–910
CrossRef
Pubmed
Google scholar
|
[43] |
Held M, Schmitz M H, Fischer B, Walter T, Neumann B, Olma M H, Peter M, Ellenberg J, Gerlich D W (2010). CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods, 7(9): 747–754
CrossRef
Pubmed
Google scholar
|
[44] |
Hillen W, Klock G, Kaffenberger I, Wray L V, Reznikoff W S (1982). Purification of the TET repressor and TET operator from the transposon Tn10 and characterization of their interaction. J Biol Chem, 257(11): 6605–6613
Pubmed
|
[45] |
Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170
CrossRef
Pubmed
Google scholar
|
[46] |
Hsu P D, Lander E S, Zhang F (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6): 1262–1278
CrossRef
Pubmed
Google scholar
|
[47] |
Hu H, Zhang H, Wang S, Ding M, An H, Hou Y, Yang X, Wei W, Sun Y, Tang C (2017). Live visualization of genomic loci with BiFC-TALE. Sci Rep, 7: 40192
CrossRef
Pubmed
Google scholar
|
[48] |
Hübner M R, Spector D L (2010). Chromatin dynamics. Annu Rev Biophys, 39(1): 471–489
CrossRef
Pubmed
Google scholar
|
[49] |
Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert L A, Ishikawa H, Leonetti M D, Marshall W F, Weissman J S, Huang B (2016). Versatile protein tagging in cells with split fluorescent protein. Nat Commun, 7: 11046
CrossRef
Pubmed
Google scholar
|
[50] |
Kanda T, Sullivan K F, Wahl G M (1998). Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol, 8(7): 377–385
CrossRef
Pubmed
Google scholar
|
[51] |
Kapuscinski J (1995). DAPI: a DNA-specific fluorescent probe. Biotech Histochem, 70(5): 220–233
CrossRef
Pubmed
Google scholar
|
[52] |
Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y (2015). Uniform Contraction-Expansion Description of Relative Centromere and Telomere Motion. Biophys J, 109(7): 1454–1462
CrossRef
Pubmed
Google scholar
|
[53] |
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192
CrossRef
Pubmed
Google scholar
|
[54] |
Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65
CrossRef
Pubmed
Google scholar
|
[55] |
Kumaran R I, Thakar R, Spector D L (2008). Chromatin dynamics and gene positioning. Cell, 132(6): 929–934
CrossRef
Pubmed
Google scholar
|
[56] |
Langer-Safer P R, Levine M, Ward D C (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA, 79(14): 4381–4385
CrossRef
Pubmed
Google scholar
|
[57] |
Larson D R, Zenklusen D, Wu B, Chao J A, Singer R H (2011). Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science, 332(6028): 475–478
CrossRef
Pubmed
Google scholar
|
[58] |
Levi V, Ruan Q, Plutz M, Belmont A S, Gratton E (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J, 89(6): 4275–4285
CrossRef
Pubmed
Google scholar
|
[59] |
Levine M (2014). The contraction of time and space in remote chromosomal interactions. Cell, 158(2): 243–244
CrossRef
Pubmed
Google scholar
|
[60] |
Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838
CrossRef
Pubmed
Google scholar
|
[61] |
Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A 3rd, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E (2015). ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251): aab3500
CrossRef
Pubmed
Google scholar
|
[62] |
Li J, Zhang B B, Ren Y G, Gu S Y, Xiang Y H, Du J L (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res, 25(5): 634–637
CrossRef
Pubmed
Google scholar
|
[63] |
Lindhout B I, Fransz P, Tessadori F, Meckel T, Hooykaas P J, van der Zaal B J (2007). Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res, 35(16): e107
CrossRef
Pubmed
Google scholar
|
[64] |
Lottersberger F, Karssemeijer R A, Dimitrova N, de Lange T (2015). 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA Repair. Cell, 163(4): 880–893
CrossRef
Pubmed
Google scholar
|
[65] |
Lucas J S, Zhang Y, Dudko O K, Murre C (2014). 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell, 158(2): 339–352
CrossRef
Pubmed
Google scholar
|
[66] |
Ma H, Naseri A, Reyes-Gutierrez P, Wolfe S A, Zhang S, Pederson T (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA, 112(10): 3002–3007
CrossRef
Pubmed
Google scholar
|
[67] |
Ma H, Reyes-Gutierrez P, Pederson T (2013). Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci USA, 110(52): 21048–21053
CrossRef
Pubmed
Google scholar
|
[68] |
Ma H, Tu L C, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol, 34(5): 528–530
CrossRef
Pubmed
Google scholar
|
[69] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
CrossRef
Pubmed
Google scholar
|
[70] |
Marshall W F, Straight A, Marko J F, Swedlow J, Dernburg A, Belmont A, Murray A W, Agard D A, Sedat J W (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol, 7(12): 930–939
CrossRef
Pubmed
Google scholar
|
[71] |
Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T, Murphy N, Hupé P, Barillot E, Belmont A S, Heard E (2011). Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell, 145(3): 447–458
CrossRef
Pubmed
Google scholar
|
[72] |
Meaburn K J, Misteli T (2007). Cell biology: chromosome territories. Nature, 445(7126): 379–781
CrossRef
Pubmed
Google scholar
|
[73] |
Meldi L, Brickner J H (2011). Compartmentalization of the nucleus. Trends Cell Biol, 21(12): 701–708
CrossRef
Pubmed
Google scholar
|
[74] |
Miyanari Y (2014). TAL effector-mediated genome visualization (TGV). Methods, 69(2): 198–204
CrossRef
Pubmed
Google scholar
|
[75] |
Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324
CrossRef
Pubmed
Google scholar
|
[76] |
Nelles D A, Fang M Y, O’Connell M R, Xu J L, Markmiller S J, Doudna J A, Yeo G W (2016). Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165(2): 488–496
CrossRef
Pubmed
Google scholar
|
[77] |
Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D (2011). The dynamic architecture of Hox gene clusters. Science, 334(6053): 222–225
CrossRef
Pubmed
Google scholar
|
[78] |
Nora E P, Lajoie B R, Schulz E G, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum N L, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485(7398): 381–385
CrossRef
Pubmed
Google scholar
|
[79] |
O’Connell M R, Oakes B L, Sternberg S H, East-Seletsky A, Kaplan M, Doudna J A (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530): 263–266
CrossRef
Pubmed
Google scholar
|
[80] |
Ochiai H, Sugawara T, Yamamoto T (2015). Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res, 43(19): e127
CrossRef
Pubmed
Google scholar
|
[81] |
Pederson T (2014). Repeated TALEs: visualizing DNA sequence localization and chromosome dynamics in live cells. Nucleus, 5(1): 28–31
CrossRef
Pubmed
Google scholar
|
[82] |
Pope B D, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera D L, Wang Y, Hansen R S, Canfield T K, Thurman R E, Cheng Y, Gülsoy G, Dennis J H, Snyder M P, Stamatoyannopoulos J A, Taylor J, Hardison R C, Kahveci T, Ren B, Gilbert D M (2014). Topologically associating domains are stable units of replication-timing regulation. Nature, 515(7527): 402–405
CrossRef
Pubmed
Google scholar
|
[83] |
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun, 8: 14725
CrossRef
Pubmed
Google scholar
|
[84] |
Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546): 186–191
CrossRef
Pubmed
Google scholar
|
[85] |
Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247
CrossRef
Pubmed
Google scholar
|
[86] |
Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, Yang F, Ju Z, Ren X, Wang S, Tang H, Geng L, Zhang W, Li J, Qiao J, Xu T, Qu J, Liu G H (2017). Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res, 27(4): 483–504
CrossRef
Pubmed
Google scholar
|
[87] |
Ricci M A, Manzo C, García-Parajo M F, Lakadamyali M, Cosma M P (2015). Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell, 160(6): 1145–1158
CrossRef
Pubmed
Google scholar
|
[88] |
Ried T, Schröck E, Ning Y, Wienberg J (1998). Chromosome painting: a useful art. Hum Mol Genet, 7(10): 1619–1626
CrossRef
Pubmed
Google scholar
|
[89] |
Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700
CrossRef
Pubmed
Google scholar
|
[90] |
Roukos V, Voss T C, Schmidt C K, Lee S, Wangsa D, Misteli T (2013). Spatial dynamics of chromosome translocations in living cells. Science, 341(6146): 660–664
CrossRef
Pubmed
Google scholar
|
[91] |
Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K (2014). DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet, 10(3): e1004187
CrossRef
Pubmed
Google scholar
|
[92] |
Salic A, Mitchison T J (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA, 105(7): 2415–2420
CrossRef
Pubmed
Google scholar
|
[93] |
Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336
CrossRef
Pubmed
Google scholar
|
[94] |
Segal D J, Dreier B, Beerli R R, Barbas C F 3rd (1999). Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA, 96(6): 2758–2763
CrossRef
Pubmed
Google scholar
|
[95] |
Shachar S, Voss T C, Pegoraro G, Sciascia N, Misteli T (2015). Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell, 162(4): 911–923
CrossRef
Pubmed
Google scholar
|
[96] |
Shalem O, Sanjana N E, Zhang F (2015). High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet, 16(5): 299–311
CrossRef
Pubmed
Google scholar
|
[97] |
Shao S,
|
[98] |
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res, 44(9): e86
CrossRef
Pubmed
Google scholar
|
[99] |
Shechner D M, Hacisuleyman E, Younger S T, Rinn J L (2015). Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods, 12(7): 664–670
CrossRef
Pubmed
Google scholar
|
[100] |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
CrossRef
Pubmed
Google scholar
|
[101] |
Smeets D, Markaki Y, Schmid V J, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M (2014). Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin, 7(1): 8
CrossRef
Pubmed
Google scholar
|
[102] |
Solovei I, Cremer M (2010). 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol, 659: 117–126
CrossRef
Pubmed
Google scholar
|
[103] |
Soutoglou E, Dorn J F, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007). Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol, 9(6): 675–682
CrossRef
Pubmed
Google scholar
|
[104] |
Strack R L, Disney M D, Jaffrey S R (2013). A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods, 10(12): 1219–1224
CrossRef
Pubmed
Google scholar
|
[105] |
Tagarro I, Fernández-Peralta A M, González-Aguilera J J (1994). Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet, 93(4): 383–388
CrossRef
Pubmed
Google scholar
|
[106] |
Takei Y, Shah S, Harvey S, Qi L S, Cai L (2017). Multiplexed dynamic imaging of genomic loci in single cells by combined CRISPR imaging and DNA sequential FISH. Biophy J, 112(9): 1773–1776
|
[107] |
Tanenbaum M E, Gilbert L A, Qi L S, Weissman J S, Vale R D (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3): 635–646
CrossRef
Pubmed
Google scholar
|
[108] |
Tang Z, Luo O J, Li X, Zheng M, Zhu J J, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian S Z, Penrad-Mobayed M, Sachs L M, Ruan X, Wei C L, Liu E T, Wilczynski G M, Plewczynski D, Li G, Ruan Y (2015). CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell, 163(7): 1611–1627
CrossRef
Pubmed
Google scholar
|
[109] |
Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, Bultmann S, Leonhardt H (2014). Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res, 42(6): e38
CrossRef
Pubmed
Google scholar
|
[110] |
Therizols P, Illingworth R S, Courilleau C, Boyle S, Wood A J, Bickmore W A (2014). Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science, 346(6214): 1238–1242
CrossRef
Pubmed
Google scholar
|
[111] |
Tsukamoto T, Hashiguchi N, Janicki S M, Tumbar T, Belmont A S, Spector D L (2000). Visualization of gene activity in living cells. Nat Cell Biol, 2(12): 871–878
CrossRef
Pubmed
Google scholar
|
[112] |
Verdaasdonk J S, Vasquez P A, Barry R M, Barry T, Goodwin S, Forest M G, Bloom K (2013). Centromere tethering confines chromosome domains. Mol Cell, 52(6): 819–831
CrossRef
Pubmed
Google scholar
|
[113] |
Viollier P H, Thanbichler M, McGrath P T, West L, Meewan M, McAdams H H, Shapiro L (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25): 9257–9262
CrossRef
Pubmed
Google scholar
|
[114] |
Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478
CrossRef
Pubmed
Google scholar
|
[115] |
Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M (2015). Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep, 5: 15348
CrossRef
Pubmed
Google scholar
|
[116] |
Waldman F M, Chew K, Ljung B M, Goodson W, Hom J, Duarte L A, Smith H S, Mayall B (1991). A comparison between bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Mod Pathol, 4(6): 718–722
Pubmed
|
[117] |
Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang A P, Fang W, Ji W, Li W, Zhao X, Zhou Q (2015). One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res, 25(2): 258–261
CrossRef
Pubmed
Google scholar
|
[118] |
Wang S, Su J H, Beliveau B J, Bintu B, Moffitt J R, Wu C T, Zhuang X (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353(6299): 598–602
CrossRef
Pubmed
Google scholar
|
[119] |
Wang W, Li G W, Chen C, Xie X S, Zhuang X (2011). Chromosome organization by a nucleoid-associated protein in live bacteria. Science, 333(6048): 1445–1449
CrossRef
Pubmed
Google scholar
|
[120] |
Wijchers P J, Krijger P H, Geeven G, Zhu Y, Denker A, Verstegen M J, Valdes-Quezada C, Vermeulen C, Janssen M, Teunissen H, Anink-Groenen L C, Verschure P J, de Laat W (2016). Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Mol Cell, 61(3): 461–473
CrossRef
Pubmed
Google scholar
|
[121] |
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 25(1): 67–79
CrossRef
Pubmed
Google scholar
|
[122] |
Zalatan J G, Lee M E, Almeida R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(1-2): 339–350
CrossRef
Pubmed
Google scholar
|
[123] |
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie X S (2017). Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res, 27(2): 298–301
CrossRef
Pubmed
Google scholar
|
[124] |
Zuleger N, Boyle S, Kelly D A, de las Heras J I, Lazou V, Korfali N, Batrakou D G, Randles K N, Morris G E, Harrison D J, Bickmore W A, Schirmer E C (2013). Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol, 14(2): R14
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |