RESEARCH ARTICLE

Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation

  • Turban Kar 1 ,
  • Pijush Basak 2 ,
  • Srikanta Sen 3 ,
  • Rittik Kumar Ghosh 1 ,
  • Maitree Bhattacharyya , 1,2
Expand
  • 1. Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
  • 2. Jagadis Bose National Science Talent Search, Kolkata-700107, India
  • 3. 229A/230, Mira Tower, Lake Town, Block-A, Kolkata-700089, India

Received date: 07 Dec 2016

Accepted date: 15 Mar 2017

Published date: 19 Jun 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

METHODS: The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

RESULTS: Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105 M−1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

CONCLUSIONS: On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.

Cite this article

Turban Kar , Pijush Basak , Srikanta Sen , Rittik Kumar Ghosh , Maitree Bhattacharyya . Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation[J]. Frontiers in Biology, 2017 , 12(3) : 199 -209 . DOI: 10.1007/s11515-017-1449-z

Acknowledgments

We acknowledge UGC-DAE for providing fellowship to Turban Kar. We are also grateful to DST (FIST), World Bank-ICZMP (54-ICZMP/3P), UGC-CAS, UGC-UPE, and DBT-IPLS, Government of India for providing the instrumental facility in the Department of Biochemistry, Calcutta University.

Compliance with ethics guidelines

The authors completely acknowledge the above mentioned funding agencies for grants. The authors Turban Kar, Pijush Basak, Srikanta Sen, Rittik Kumar Ghosh and Maitree Bhattacharyya declare no conflicts of interest.
1
Aggarwal B B, Kumar  A, Bharti A C  (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 23(1A): 363–398

PMID

2
Aggarwal M L, Chacko  K M, Kuruvilla  B T (2016). Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep, 13(1): 592–604

PMID

3
Airinei A, Tigoianu  R I, Rusu  E, Dorohoi D O  (2011). Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct, 6(3): 1265–1272

4
Basak P, Debnath  T, Banerjee R ,  Bhattacharyya M  (2016). Selective binding of divalent cations towardheme proteins. Front Biol, 11(1): 32–42

DOI

5
Basak P, Pattanayak  R, Bhattacharyya M  (2015). Transition metal induced conformational change of heme proteins. Spectrosc Lett, 48(5): 324–330

DOI

6
Baskaran N, Manoharan  S, Balakrishnan S ,  Pugalendhi P  (2010). Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur J Pharmacol, 637(1-3): 22–29

DOI PMID

7
Biovia D S (2016). Discovery Studio Modeling Environment, Release 2017.DassaultSystèmes, San Diego, CA

8
Brooks B R, Bruccoleri  R E, Olafson  B D, States  D J, Swaminathan  S, Karplus M  (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem, 4(2): 187–217

DOI

9
Cheng Z J, Zhao  H M, Xu  Q Y, Liu  R (2013). Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches. JPA, 3(4): 257–269

10
Dickinson D A ,  Levonen A L ,  Moellering D R ,  Arnold E K ,  Zhang H ,  Darley-Usmar V M ,  Forman H J  (2004). Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med, 37(8): 1152–1159

DOI PMID

11
Forli S, Huey  R, Pique M E ,  Sanner M F ,  Goodsell D S ,  Olson A J  (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc, 11(5): 905–919

DOI PMID

12
Gupta S C, Prasad  S, Kim J H ,  Patchva S ,  Webb L J ,  Priyadarsini I K ,  Aggarwal B B  (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep, 28(12): 1937–1955

DOI PMID

13
Hou T, Zhang  W, Huang Q ,  Xu X (2005). An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model. J Mol Model, 11(1): 26–40

DOI PMID

14
Lee H Y, Kim  S W, Lee  G H, Choi  M K, Jung  H W, Kim  Y J, Kwon  H J, Chae  H J (2016). Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement Altern Med, 16(1): 316

DOI PMID

15
Lehrer S S (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10(17): 3254–3263

DOI PMID

16
Leung M H, Kee  T W (2009). Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir, 25(10): 5773–5777

DOI PMID

17
Maciążek-Jurczyk M ,  Maliszewska M ,  Pożycka J ,  Równicka-Zubik J ,  Góra A ,  Sułkowska A  (2013). Tamoxifen and curcumin binding to serum albumin.Spectroscopic study. J Mol Struct, 1044: 194–200 

DOI

18
Masone D, Chanforan  C (2015). Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Comput Biol Chem, 56: 152–158

DOI PMID

19
Mazaheri M, Moosavi-Movahedi  A A, Saboury  A A, Rezaei  M H, Shourian  M, Farhadi M ,  Sheibani N  (2015). Curcumin mitigates the fibrillation of human serum albumin and diminishes the formation of reactive oxygen species. Protein Pept Lett, 22(4): 348–353

DOI PMID

20
Mothi N, Muthu  S A, Kale  A, Ahmad B  (2015). Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophys Chem, 207: 30–39

DOI PMID

21
Pattanayak R, Basak  P, Sen S ,  Bhattacharyya M  (2016). Interaction of KRAS G-quadruplex with natural polyphenols: A spectroscopic analysis with molecular modeling. Int J Biol Macromol, 89: 228–237

DOI PMID

22
Prasad P, Khan  I, Kondaiah P ,  Chakravarty A R  (2013). Mitochondria-targeting oxidovanadium(IV) complex as a near-IR light photocytotoxic agent. Chemistry, 19(51): 17445–17455

DOI PMID

23
Sahoo B K, Ghosh  K S, Dasgupta  S (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers, 91(2): 108–119

DOI PMID

24
Salzano A M, Renzone  G, Scaloni A ,  Torreggiani A ,  Ferreri C ,  Chatgilialoglu C  (2011). Human serum albumin modifications associated with reductive radical stress. Mol Biosyst, 7(3): 889–898

DOI PMID

25
Semiz G, Çelik  G, Gönen E ,  Semiz A  (2016). Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res, 30(19): 2225–2229

DOI PMID

26
Siddiqi M K, Alam  P, Chaturvedi S K ,  Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228

DOI PMID

27
Siddiqi M K, Alam  P, Chaturvedi S K ,  Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228

DOI PMID

28
Singh D V, Bharti  S K, Agarwal  S, Roy R ,  Misra K  (2014). Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model, 20(8): 2365

DOI PMID

29
Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139

DOI PMID

30
Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139

DOI PMID

31
Sudlow G, Birkett  D J, Wade  D N (1975). The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol, 11(6): 824–832

PMID

32
Zaidi N, Ajmal  M R, Rabbani  G, Ahmad E ,  Khan R H  (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis. PLoS One, 8(8): e71422

DOI PMID

33
Zhang Y, Golub  L M, Johnson  F, Wishnia A  (2012). pKa, zinc- and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Curr Med Chem, 19(25): 4367–4375

PMID

Outlines

/