Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation

Turban Kar , Pijush Basak , Srikanta Sen , Rittik Kumar Ghosh , Maitree Bhattacharyya

Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 199 -209.

PDF (1298KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 199 -209. DOI: 10.1007/s11515-017-1449-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation

Author information +
History +
PDF (1298KB)

Abstract

BACKGROUND: Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

METHODS: The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

RESULTS: Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105 M−1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

CONCLUSIONS: On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.

Keywords

curcumin / human serum albumin / fluorescence quenching / conformational change / thermodynamic parameters

Cite this article

Download citation ▾
Turban Kar, Pijush Basak, Srikanta Sen, Rittik Kumar Ghosh, Maitree Bhattacharyya. Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation. Front. Biol., 2017, 12(3): 199-209 DOI:10.1007/s11515-017-1449-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggarwal B BKumar  ABharti A C  (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res23(1A): 363–398

[2]

Aggarwal M LChacko  K MKuruvilla  B T (2016). Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep13(1): 592–604

[3]

Airinei ATigoianu  R IRusu  EDorohoi D O  (2011). Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct6(3): 1265–1272

[4]

Basak PDebnath  TBanerjee R Bhattacharyya M  (2016). Selective binding of divalent cations towardheme proteins. Front Biol11(1): 32–42

[5]

Basak PPattanayak  RBhattacharyya M  (2015). Transition metal induced conformational change of heme proteins. Spectrosc Lett48(5): 324–330

[6]

Baskaran NManoharan  SBalakrishnan S Pugalendhi P  (2010). Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur J Pharmacol637(1-3): 22–29

[7]

Biovia D S (2016). Discovery Studio Modeling Environment, Release 2017.DassaultSystèmes, San Diego, CA

[8]

Brooks B RBruccoleri  R EOlafson  B DStates  D JSwaminathan  SKarplus M  (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem4(2): 187–217

[9]

Cheng Z JZhao  H MXu  Q YLiu  R (2013). Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches. JPA3(4): 257–269

[10]

Dickinson D A Levonen A L Moellering D R Arnold E K Zhang H Darley-Usmar V M Forman H J  (2004). Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med37(8): 1152–1159

[11]

Forli SHuey  RPique M E Sanner M F Goodsell D S Olson A J  (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc11(5): 905–919

[12]

Gupta S CPrasad  SKim J H Patchva S Webb L J Priyadarsini I K Aggarwal B B  (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep28(12): 1937–1955

[13]

Hou TZhang  WHuang Q Xu X (2005). An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model. J Mol Model11(1): 26–40

[14]

Lee H YKim  S WLee  G HChoi  M KJung  H WKim  Y JKwon  H JChae  H J (2016). Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement Altern Med16(1): 316

[15]

Lehrer S S (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry10(17): 3254–3263

[16]

Leung M HKee  T W (2009). Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir25(10): 5773–5777

[17]

Maciążek-Jurczyk M Maliszewska M Pożycka J Równicka-Zubik J Góra A Sułkowska A  (2013). Tamoxifen and curcumin binding to serum albumin.Spectroscopic study. J Mol Struct1044: 194–200 

[18]

Masone DChanforan  C (2015). Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Comput Biol Chem56: 152–158

[19]

Mazaheri MMoosavi-Movahedi  A ASaboury  A ARezaei  M HShourian  MFarhadi M Sheibani N  (2015). Curcumin mitigates the fibrillation of human serum albumin and diminishes the formation of reactive oxygen species. Protein Pept Lett22(4): 348–353

[20]

Mothi NMuthu  S AKale  AAhmad B  (2015). Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophys Chem207: 30–39

[21]

Pattanayak RBasak  PSen S Bhattacharyya M  (2016). Interaction of KRAS G-quadruplex with natural polyphenols: A spectroscopic analysis with molecular modeling. Int J Biol Macromol89: 228–237

[22]

Prasad PKhan  IKondaiah P Chakravarty A R  (2013). Mitochondria-targeting oxidovanadium(IV) complex as a near-IR light photocytotoxic agent. Chemistry19(51): 17445–17455

[23]

Sahoo B KGhosh  K SDasgupta  S (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers91(2): 108–119

[24]

Salzano A MRenzone  GScaloni A Torreggiani A Ferreri C Chatgilialoglu C  (2011). Human serum albumin modifications associated with reductive radical stress. Mol Biosyst7(3): 889–898

[25]

Semiz GÇelik  GGönen E Semiz A  (2016). Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res30(19): 2225–2229

[26]

Siddiqi M KAlam  PChaturvedi S K Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol92: 1220–1228

[27]

Siddiqi M KAlam  PChaturvedi S K Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol92: 1220–1228

[28]

Singh D VBharti  S KAgarwal  SRoy R Misra K  (2014). Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model20(8): 2365

[29]

Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys595: 136–139

[30]

Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys595: 136–139

[31]

Sudlow GBirkett  D JWade  D N (1975). The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol11(6): 824–832

[32]

Zaidi NAjmal  M RRabbani  GAhmad E Khan R H  (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis. PLoS One8(8): e71422

[33]

Zhang YGolub  L MJohnson  FWishnia A  (2012). pKa, zinc- and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Curr Med Chem19(25): 4367–4375

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1298KB)

1605

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/