Received date: 04 Jan 2017
Accepted date: 09 Mar 2017
Published date: 19 Jun 2017
Copyright
BACKGROUND: The prevalence of neurodegenerative disorders such as Parkinson’s disease (PD) is increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the researches to establish novel therapeutic strategies. Many studies have shown that mitochondria as the most important organelles in the brain which show impairment in PD models. Succinate dehydrogenase (SDH) as a component of the oxidative phosphorylation system in mitochondria connects Krebs cycle to the electron transport chain. Dysfunction or inhibition of the SDH can trigger mitochondrial impairment and disruption in ATP generation. Excessive in lipid synthesis and induction of the excitotoxicity as inducers in PD are controlled by SDH activity directly and indirectly. On the other hand, mutation in subunits of the SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as one of the main regulators in neuroprotection.
OBJECTIVE: In this review we will consider contribution of the SDH and its related mechanisms in PD.
METHODS: Pubmed search engine was used to find published studies from 1977 to 2016. “Succinate dehydrogenase”, “lipid and brain”, “mitochondria and Parkinson’s disease” were the main keywords for searching in the engine.
RESULTS: Wide ranges of studies (59 articles) in neurodegenerative disorders especially Parkinson’s disease like genetics of the Parkinson’s disease, effects of the mutant SDH on cell activity and physiology and lipid alteration in neurodegenerative disorders have been used in this review.
CONCLUSION: Mitochondria as key organelles in the energy generation plays crucial roles in PD. ETC complex in this organelle consists four complexes which alteration in their activities cause ROS generation and ATP depletion. Most of complexes are encoded by mtDNA while complex II is the only part of the ETC which is encoded by nuclear genome. So, focusing on the SDH and related pathways which have important role in neuronal survival and SDH has a potential to further studies as a novel neuroprotective agent.
Mohammad Jodeiri Farshbaf . Succinate dehydrogenase in Parkinson’s disease[J]. Frontiers in Biology, 2017 , 12(3) : 175 -182 . DOI: 10.1007/s11515-017-1450-6
1 |
Ali S F, David S N, Newport G D, Cadet J L, Slikker W Jr(1994). MPTP-induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse, 18(1): 27–34
|
2 |
Beal M F, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman B T (1993). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem, 61(3): 1147–1150
|
3 |
Berliocchi L, Bano D, Nicotera P (2005). Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci, 360(1464): 2255–2258
|
4 |
Bonifati V (2007). Genetics of parkinsonism. Parkinsonism Relat Disord, 13(Suppl 3): S233–S241
|
5 |
Cecchini G (2003). Function and structure of complex II of the respiratory chain. Annu Rev Biochem, 72(1): 77–109
|
6 |
Chen H, Zhang S M, Hernán M A, Willett W C, Ascherio A (2003). Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol, 157(11): 1007–1014
|
7 |
Cole N B, Murphy D D, Grider T, Rueter S, Brasaemle D, Nussbaum R L (2002). Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem, 277(8): 6344–6352
|
8 |
Davis R E, Williams M (2012). Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther, 342(3): 598–607
|
9 |
de Lau L M, Breteler M M(2006). Epidemiology of Parkinson’s disease. Lancet Neurol, 5(6): 525–535
|
11 |
de Rijk M C, Breteler M M, Graveland G A, Ott A, Grobbee D E, van der Meché F G, Hofman A (1995). Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study. Neurology, 45(12): 2143–2146
|
12 |
Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 86(11): 839–848
|
13 |
Etschmaier K, Becker T, Eichmann T O, Schweinzer C, Scholler M, Tam-Amersdorfer C, Poeckl M, Schuligoi R, Kober A, Chirackal Manavalan A P, Rechberger G N, Streith I E, Zechner R, Zimmermann R, Panzenboeck U (2011). Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers. J Neurochem, 119(5): 1016–1028
|
14 |
Exner N, Lutz A K, Haass C, Winklhofer K F (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14): 3038–3062
|
15 |
Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H Jr, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M S, White S H, Witztum J L, Dennis E A (2005). A comprehensive classification system for lipids. J Lipid Res, 46(5): 839–861
|
16 |
Fernández A, Llacuna L, Fernández-Checa J C, Colell A (2009). Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci, 29(20): 6394–6405
|
17 |
Fernandez-Gomez F J, Galindo M F, Gómez-Lázaro M, Yuste V J, Comella J X, Aguirre N, Jordán J (2005). Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br J Pharmacol, 144(4): 528–537
|
18 |
Fujimoto T, Parton R G (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol, 3(3): 3
|
19 |
Gitler A D, Bevis B J, Shorter J, Strathearn K E, Hamamichi S, Su L J, Caldwell K A, Caldwell G A, Rochet J C, McCaffery J M, Barlowe C, Lindquist S(2008). The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA, 105(1): 145–150
|
20 |
Guo L, Shestov A A, Worth A J, Nath K, Nelson D S, Leeper D B, Glickson J D, Blair I A (2016). Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem, 291(1): 42–57
|
21 |
Gutman M, Kearney E B, Singer T P (1971). Control of succinate dehydrogenase in mitochondria. Biochemistry, 10(25): 4763–4770
|
22 |
Hallett P J, Standaert D G (2004). Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther, 102(2): 155–174
|
23 |
Hanagasi H A, Ayribas D, Baysal K, Emre M (2005). Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci, 115(4): 479–493
|
24 |
Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991). Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol, 30(4): 563–571
|
25 |
Horton J D, Goldstein J L, Brown M S (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109(9): 1125–1131
|
25 |
IshiiT, MiyazawaM, OnoderaA, YasudaK, KawabeN, KirinashizawaM, YoshimuraS, MaruyamaN, HartmanP S, IshiiN (2011). Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion. 11(1): 155–165
|
26 |
Ivatt R M, Whitworth A J (2014). SREBF1 links lipogenesis to mitophagy and sporadic Parkinson disease. Autophagy, 10(8): 1476–1477
|
27 |
Jenner P (2003). Oxidative stress in Parkinson’s disease. Ann Neurol, 53 (Suppl 3): S26–36; discussion S36–28
|
28 |
Jodeiri Farshbaf M, Ghaedi K, Megraw T L, Curtiss J, Shirani Faradonbeh M, Vaziri P, Nasr-Esfahani M H (2016). Does PGC1/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative Disorders? Neuromolecular Med, 18(1): 1–15
|
30 |
Jung K H, Chu K, Lee S T, Park H K, Kim J H, Kang K M, Kim M, Lee S K, Roh J K (2009). Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition. Biochem Biophys Res Commun, 378(3): 507–512
|
31 |
Khatchadourian A, Bourque S D, Richard V R, Titorenko V I, Maysinger D (2012). Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta, 1821(4): 607–617
|
32 |
Kühlbrandt W (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol, 13(1): 89
|
33 |
Langston J W, Ballard P, Tetrud J W, Irwin I(1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980
|
34 |
Legros F, Malka F, Frachon P, Lombès A, Rojo M (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci, 117(Pt 13): 2653–2662
|
35 |
Linderholm H, Essén-Gustavsson B, Thornell L E (1990). Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J Intern Med, 228(1): 43–52
|
36 |
Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ, 16(6): 899–909
|
37 |
Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291
|
38 |
Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham B H, Quintana A, Bellen H J (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160(1-2): 177–190
|
38 |
LodgeD (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 56(1): 6–21
|
39 |
Martin L J (2010). Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals (Basel), 3(4): 839–915
|
40 |
Meijer A J (2003). Amino acids as regulators and components of nonproteinogenic pathways. J Nutr, 133(6 Suppl 1): 2057S–2062S
|
41 |
Okamoto K, Kimura A, Donishi T, Imbe H, Goda K, Kawanishi K, Tamai Y, Senba E (2006). Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Exp Brain Res, 170(3): 358–367
|
42 |
Owen O E, Kalhan S C, Hanson R W (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem, 277(34): 30409–30412
|
43 |
Perier C, Vila M (2012). Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med, 2(2): a009332
|
44 |
Porstmann T, Santos C R, Griffiths B, Cully M, Wu M, Leevers S, Griffiths J R, Chung Y L, Schulze A (2008). SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab, 8(3): 224–236
|
45 |
Przedborski S (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord, 11(Suppl 1): S3–S7
|
46 |
Ralph S J, Moreno-Sánchez R, Neuzil J, Rodríguez-Enríquez S (2011). Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res, 28(11): 2695–2730
|
47 |
Recchia A, Debetto P, Negro A, Guidolin D, Skaper S D, Giusti P (2004). Alpha-synuclein and Parkinson’s disease. FASEB J, 18(6): 617–626
|
48 |
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A, Freyssenet D, Tanti J F, Le-Marchand-Brustel Y, Ferrier B, Conjard-Duplany A, Romanino K, Bauché S, Hantaï D, Mueller M, Kozma S C, Thomas G, Rüegg M A, Ferry A, Pende M, Bigard X, Koulmann N, Schaeffer L, Gangloff Y G (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol, 187(6): 859–874
|
49 |
Rothstein J D (1996). Excitotoxicity hypothesis. Neurology, 47: S19–25; discussion S26
|
50 |
Rottenberg H, Gutman M (1977). Control of the rate of reverse electron transport in submitochondrial particles by the free energy. Biochemistry, 16(14): 3220–3227
|
51 |
Schapira A H, Cooper J M, Dexter D, Clark J B, Jenner P, Marsden C D (1990). Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem, 54(3): 823–827
|
52 |
Schmitt M, Dehay B, Bezard E, Garcia-Ladona F J (2016). Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse, 70(3): 71–86
|
53 |
Schulz J B (2005). Neuronal pathology in Parkinson’s disease. Cell Tissue Res, 320(1): 211
|
54 |
SchulzJ B, FalkenburgerB H (2004). Neuronal pathology in Parkinson’s disease. Cell Tissue Res, 318(1): 135–147
|
54 |
Schwall C T, Greenwood V L, Alder N N (2012). The stability and activity of respiratory Complex II is cardiolipin-dependent. Biochim Biophys Acta, 1817(9): 1588–1596
|
55 |
Selman C, Tullet J M, Wieser D, Irvine E, Lingard S J, Choudhury A I, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson I C, Schuster E, Batterham R L, Kozma S C, Thomas G, Carling D, Okkenhaug K, Thornton J M, Partridge L, Gems D, Withers D J (2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 326(5949): 140–144
|
56 |
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 121(7): 1043–1057
|
57 |
Van Vranken J G, Bricker D K, Dephoure N, Gygi S P, Cox J E, Thummel C S, Rutter J (2014). SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab, 20(2): 241–252
|
58 |
Villa-Cuesta E, Holmbeck M A, Rand D M (2014). Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. J Cell Sci, 127(Pt 10): 2282–2290
|
59 |
Wübbeler J H, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A (2015). The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3′-thiodipropionic acid and hence the production of polythioesters. J Biotechnol, 209: 85–95
|
60 |
Yasuda T, Nakata Y, Mochizuki H (2013).α-Synuclein and neuronal cell death. Mol Neurobiol, 47(2): 466–483
|
61 |
Younce C, Kolattukudy P (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem, 30(2): 307–320
|
62 |
Zhou Q, Sheng M (2013). NMDA receptors in nervous system diseases. Neuropharmacology, 74: 69–75
|
/
〈 | 〉 |