Succinate dehydrogenase in Parkinson’s disease

Mohammad Jodeiri Farshbaf

Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 175 -182.

PDF (559KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (3) : 175 -182. DOI: 10.1007/s11515-017-1450-6
REVIEW
REVIEW

Succinate dehydrogenase in Parkinson’s disease

Author information +
History +
PDF (559KB)

Abstract

BACKGROUND: The prevalence of neurodegenerative disorders such as Parkinson’s disease (PD) is increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the researches to establish novel therapeutic strategies. Many studies have shown that mitochondria as the most important organelles in the brain which show impairment in PD models. Succinate dehydrogenase (SDH) as a component of the oxidative phosphorylation system in mitochondria connects Krebs cycle to the electron transport chain. Dysfunction or inhibition of the SDH can trigger mitochondrial impairment and disruption in ATP generation. Excessive in lipid synthesis and induction of the excitotoxicity as inducers in PD are controlled by SDH activity directly and indirectly. On the other hand, mutation in subunits of the SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as one of the main regulators in neuroprotection.

OBJECTIVE: In this review we will consider contribution of the SDH and its related mechanisms in PD.

METHODS: Pubmed search engine was used to find published studies from 1977 to 2016. “Succinate dehydrogenase”, “lipid and brain”, “mitochondria and Parkinson’s disease” were the main keywords for searching in the engine.

RESULTS: Wide ranges of studies (59 articles) in neurodegenerative disorders especially Parkinson’s disease like genetics of the Parkinson’s disease, effects of the mutant SDH on cell activity and physiology and lipid alteration in neurodegenerative disorders have been used in this review.

CONCLUSION: Mitochondria as key organelles in the energy generation plays crucial roles in PD. ETC complex in this organelle consists four complexes which alteration in their activities cause ROS generation and ATP depletion. Most of complexes are encoded by mtDNA while complex II is the only part of the ETC which is encoded by nuclear genome. So, focusing on the SDH and related pathways which have important role in neuronal survival and SDH has a potential to further studies as a novel neuroprotective agent.

Keywords

Parkinson’s disease / mitochondria / succinate dehydrogenase / neuroprotection

Cite this article

Download citation ▾
Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease. Front. Biol., 2017, 12(3): 175-182 DOI:10.1007/s11515-017-1450-6

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Parkinsonʼs disease (PD) is a neurodegenerative disorder with the second highest prevalence in the world which affects 1% of over 60 adults (de Rijk et al., 1995). Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) is the main character of PD caused motor symptoms including resting tremor, rigidity, bradykinesia, and postural instability (de Lau and Breteler, 2006). Progression of PD depends on environmental toxins, oxidative stress, mitochondrial dysfunction, protein aggregation, neuroinflammation and disturbance in fatty acid metabolism (Chen et al., 2003; Jenner 2003; Yasuda et al., 2013; Jodeiri Farshbaf et al., 2016). Mitochondria play crucial role in the high energy demand cells such as neurons and muscle. Any disruption in the activity or function of it triggers other factors which accelerate the neuronal death (Exner et al., 2012). Moreover, mitochondria can control intracellular Ca2+ homeostasis and reactive oxygen species (ROS) level. Any dysfunction in mitochondrial activity leads to ROS generation, ATP depletion, caspase releasing and electron transport chain (ETC) defection (Martin, 2010). During neurodegeneration mitochondrial dysfunction and lipid accumulation prompt each other. Oxidative stress, neuroinflammation, mitochondrial dysfunction and ROS generation have potential roles in lipid droplet (LD)biogenesis and formation which is hallmark in some neurodegenartive diseases like PD (Khatchadourian et al., 2012; Schwall et al., 2012; Younce and Kolattukudy, 2012; Liu et al., 2015).

Here, we seek to understand the role of succinate dehydrogenase (SDH) as a member of ETC complex in PD onset and progression. SDH as a main element in the connection of the oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) is altered in neurodegenration. So, focusing on the activity and function of it could open new therapeutic avenues in front of PD treatment.

Mitochondria and PD

metabolism of fatty acids, steroids, and the generation of energy as adenosine triphosphate (ATP). Components of the mitochondria include outer membrane, inner membrane, intermembrane space and matrix. Inner membrane contains ETC structures that are responsible for OXPHOS process and ATP production. Mitochondrion has distinct DNA (mtDNA) with the size of 16.6 kb which encodes proteins for OXPHOS system and consistent functions of it (Legros et al., 2004). In the OXPHOS system, five multimere protein complexes are located in inner membrane: Complex I (NADH CoQ dehydrogenase) that contains 45 subunits which 7 subunit of them are encoded by mtDNA (Davis and Williams 2012), complex II (succinate dehydrogenase (SDH) or succinate: ubiquinone oxidoreductase (SQR) includes 4 subunits which are encoded by nuclear DNA (Hattori et al., 1999), Complex III (Ubiquinol: cytochrome c oxidoreductase) with 11 subunits that one of them is encoded by mtDNA, complex IV (cytochrome c oxidase) comprises 12 subunits which 3 of them are derived from mtDNA encoding genes (Kühlbrandt, 2015) and complex V (ATP synthase) with 16 subunits that two of them come from mtDNA (Perier and Vila, 2012). Defection in the activity of complex I correlate with the pathogenesis of the PD. 1-methyl-4- phenyl-1,2,3,4-tetrahydropyridine (MPTP) which was used as pesticide showed irreversible parkinsonian syndrome by inhibiting complex I (Langston et al., 1983). MPTP using in the in vivo models shows degeneration of dopaminergic neurons in the SNpc. Active metabolite of the MPTP, 1-methyl-4-phenylpyridiniumion (MPP+ ), induces neuronal death in in vitro models (Schulz and Falkenburger, 2004; Dauer and Przedborski, 2003). Close correlation with complex I activity and sporadic PD onset is supported by some evidences that confirm reduced activity of complex I in the platelet and skeletal muscles of PD patients (Schapira et al., 1990). MPTP and its active metabolite increase oxidative stress, ROS level and decrease ATP level by inhibiting complex I (Ali et al., 1994). Beside sporadic PD, familial form of this disease is detectable and this type of onset depends on wide various genes e.g. PINK, Parkin, DJ-1 and LRRK2 (Fig. 1) (Bonifati, 2007). But recent evidences showed changing in the activities of the mitochondrial complexes in PD patients (Hanagasi et al., 2005). But here we focus on complex II and its charge in the PD onset or progression.

Succinate dehydrogenase as the smallest member of mitochondrial respiratory chain contains four subunits (SDHA, SDHB, SDHC and SDHD). All subunits are encoded by nuclear DNA and it bonds Krebs cycle and the respiratory chain (Cecchini, 2003). SDHC and SDHD as transmembrane proteins of complex, anchor the complex to inner mitochondrial membrane (Sun et al., 2005). All subunits together can make hydrophilic head in matrix side of mitochondria. SDHA and SDHB as the catalytic cores of complex II can oxidize succinate to fumarate in the Krebs cycle. Eight enzyme control TCA cycle and their activities can be influenced by metabolite concentrations and activities of mitochondrial ETC. Succinate dehydrogenase activity is influenced by the concentrations of malate, fumarate, citrate and specifically oxaloacetate (Fig. 2) (Gutman et al., 1971). Mutation or succinate dehydrogenase inhibition leads to accumulation of malate, fumarate in the mitochondria (Van Vranken et al., 2014). For ATP generation low concentration of fumarate is so important (Rottenberg and Gutman 1977), so high level of fumarate in matrix can decrease ATP production. SDH not only influences Krebs cycle but also has a role in ROS generation (Ralph et al., 2011). Mutation in SDHC subunit in transgenic mice causes mitochondrial dysfunction and ROS production (Ishii et al., 2011). Based on previous studies, SDH can be a source for ROS generation, mitochondrial dysfunction and controlling mitochondrial hemostasis. Krebs cycle by controlling the concentration of some metabolites such as fatty acids alters cell signaling, this function of the Krebs cycle links mitochondrial matrix to cellular physiology (Owen et al., 2002). In cancer cell lines using complex II inhibitors induces lipid synthesis (Guo et al., 2016). Activity of N-methyl-D-aspartate (NMDA) receptors is increased by using 3-Nitropropionic acid (3-NP), an irreversible inhibitor of complex II (Liot et al., 2009). Enhancement of the NMDA receptors in the neurons increase Ca2+ entrances into the cell which excess amount of that cause neuronal death and injuries of central nervous system (Zhou and Sheng, 2013).

Brain is so active in lipid synthesis (Fahy et al., 2005) and excess lipids in the brain are stored in the forms of LDs which are cytoplasmic lipid storage organelles (Fujimoto and Parton 2011). Densities of the LDs are low in normal condition (Etschmaier et al., 2011) but during neurological disorders like PD they are extended (Cole et al., 2002). Therefore, LD accumulation in the brain could be early hallmark of the PD onset. In the muscle SDH activity shows capacity of the cell for TCA cycle. Using specimen from patients with hereditary myopathy showed that LD accumulation is high in their myofibrils. That features of the patients correlated with SDH low activity which could cause low ATP, high malate and low citrate levels (Linderholm et al., 1990). Malate moves into the cytoplasm through malate-aspartate shuttle which is located in the mitochondria membrane. Malate presents in the cytoplasm in the form of aspartate and α-ketoglutarate. By increasing the aspartate in the cytoplasm the mammalian target of rapamycin (mTOR) is converted into active form. mTOR works through activation of various targets in the cell (Meijer, 2003) (Fig. 3).

LD biogenesis is controlled by sterol regulatory element binding protein (SREBP) in the CNS (Liu et al., 2015). SREBP is a helix–loop–helix leucine zipper transcription factor that can translocate into nucleus after activation (Horton et al., 2002). SREBP is synthesized in inactive form and bind to endoplasmic reticulum (ER). Upon activation SREBP in precursor form is cleaved and NH2-terminal as active domain translocate into the nucleus (Eberlé et al., 2004). SREBP can control the expression of lipogenic genes, and the production of various classes of lipids such as unsaturated and saturated fatty acids, phosphatidylcholine, and phosphatidylglycerol (Porstmann et al., 2008). In PD modulation of SREBP-1 and downstream pathway can be a as neuroprotective strategy (Schmitt et al., 2016). SREBP overexpression in mice, showed high mitochondrial cholesterol levels in cortical neurons (Fernández et al., 2009). Moreover, SREBP transcription level is changed in hypothalamus or cerebrum by aging (Okamoto et al., 2006). SREBP is a spot of the mTOR which is a PI3K-like serine/threonine protein kinase and acts as a sensor for nutrients in cell. mTOR has role in the proliferation of neural stem cells, the assembly and maintenance of neuronal circuits, experience-dependent plasticity, and regulation of complex behaviors like feeding, sleep, and circadian rhythms (Lipton and Sahin, 2014). Inhibition of the mTOR in various species show enhancement in lifespan and longevity (Selman et al., 2009). In the PD models misfloding of protein, α-synuclein, triggers other signaling pathways which lead to apoptosis and neurodegenration. Accumulation of the α-synuclein is detectable in the cytoplasm of postmortem brain tissues (Recchia et al., 2004). By activation of the mTOR sutophagy mechanism which helps to clear the msifolded proteins is inhibited. So, beside the activation of the SREBP and LD accumulation, the autophagy system is inhibited in PD models (Ivatt and Whitworth, 2014). In addition, α-synuclein is the powerful inducer of the lipid synthesis and LD accumulation in PD (Gitler et al., 2008). Recent studies showed that mTOR deficiency in muscle can decrease SDH and oxidative metabolism in cell (Risson et al., 2009). Rapamycin as a specific inhibitor for mTOR signaling pathway can increase the activity of SDH in Drosophila. Fatty acid oxidation generates FADH2 which is the main stimulator of the SDH activity and rapamycin is another inducer for SDH too (Villa-Cuesta et al., 2014). Malonate is another inhibitor of the SDH can cause neuronal injuries and degeneration (Beal et al., 1993). Mechanism of neurodegeneration in the presence of malonate is happened not only by secondary excitotoxicity but also by mitochondrial membrane potential collapse and cyt C releasing (Fernandez-Gomez et al., 2005). Excitotoxicity is a process that leads to neuronal death because of excitatory amino acids such as glutamate. Previous studies showed excessive exposure to glutamate causes neuronal death and injury (Berliocchi et al., 2005). Glutamatergic neurons are the main excitatory system in the CNS and play important role in learning and memory. Glutamate acts through three major types of ionotropic receptors such as NMDA, α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainic acid (KA receptors) (Lodge, 2009). NMDA receptors are expressed in most parts of the CNS and their favorite cation is Ca2+ . Their activation in continuous pattern cause high concentration of intracellular Ca2+ which is trigger for mitochondrial membrane depolarization, caspase activation, production of ROS and nitrogen free radicals, and cellular toxicity (Rothstein 1996; Jung et al., 2009). In PD models using of the NMDA receptors antagonists showed alleviation of parkinsonian motor symptoms (Hallett ang Standaert, 2004). So, we can hypothesize that inhibition of the mitochondrial complex II can accelerate neurodegeneration through various mechanisms such as LD accumulation, ROS generation, ATP depletion and excitotoxicity process. With these recent reports raising questions about the roles of SDH, it is imperative to further validate and reach a consensus regarding this potentially important mitochondrial subunit.

Prospective studies

Mitochondria as key organelles in the energy generation plays crucial roles in PD. ETC complex in this organelle consists four complexes which alteration in their activities cause ROS generation and ATP depletion. Most of complexes are encoded by mtDNA while complex II is the only part of the ETC which is encoded by nuclear genome. Defects in complex II lead to neuronal injuries and in many neurodegenerative disorders abnormalities of SDH activity have been reported. Lipid accumulation and excitotoxicity are the main hallmarks of the neurodegenerative disorders like PD. Mitochondrial complex II can regulate both lipid metabolism and excitotoxicity directly and indirectly: mTOR as one of the main signaling proteins is active in PD and its activation can inhibit the activity of the SDH which is linker between OXPHOS process and Krebs cycle. Moreover, fatty acid oxidation is involved in Krebs cycle through SDH complex. Therefore, inhibition of the SDH by active mTOR decreases fatty acid oxidation that leads to lipid accumulation. On the other hand, mTOR can induce SREBP activity which is responsible for lipid biosynthesis. Studies showed that lipid accumulation is the early hallmark of the neurodegeneration. Most of evidences from previous studies could candidate SDH as an effective target for therapeutic interventions in neurological diseases like PD and aging. SDH overexpression or manipulation of its activity could control lipid overloading in neurodegenerative disorders. Moreover, by increasing protein level of SDH, it can be possible to control excitotoxicity and NMDA dependent signaling. The identification and characterization of the SDH protein provides important new insights into the mechanisms which SDH protects neurons from lipid overloading and ROS generating, and it can be therapeutic candidate to ameliorate PD progression.

Abbreviations

3-NP, Nitropropionic acid; AMPA, α-amino-3-hydroxy-5- methylisoxazole-4-propionate; ATP, adenosine triphosphate; ER, endoplasmic reticulum; ETC, electron transport chain; MPP+ , 1-methyl-4-phenylpyridiniumion; MPTP, 1-methyl-4-phenyl-1,2,3,4 tetrahydropyridine; mtDNA, mitochondrial DNA; mTOR, mammalian target of rapamycin; NMDA, N-methyl-D-aspartate; OXPHOS, oxidative phosphorylation; PD, Parkinson’s disease; ROS, Reactive oxygen species; SDH, succinate dehydrogenase; SNpc, substantia nigra pars compacta; SQR, succinate: ubiquinone oxidoreductase; SREBP, sterol regulatory element binding protein; TCA, tricarboxylic acid cycle.

References

[1]

Ali S FDavid S NNewport G DCadet J LSlikker W Jr(1994). MPTP-induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse18(1): 27–34 

[2]

Beal M FBrouillet EJenkins BHenshaw RRosen BHyman B T (1993). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem61(3): 1147–1150 

[3]

Berliocchi LBano DNicotera P (2005). Ca2+ signals and death programmes in neurons.  Philos Trans R Soc Lond B Biol Sci360(1464): 2255–2258 

[4]

Bonifati V (2007). Genetics of parkinsonism. Parkinsonism Relat Disord13(Suppl 3): S233–S241 

[5]

Cecchini G (2003). Function and structure of complex II of the respiratory chain. Annu Rev Biochem72(1): 77–109 

[6]

Chen HZhang S MHernán M AWillett W CAscherio A (2003). Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol157(11): 1007–1014 

[7]

Cole N BMurphy D DGrider TRueter SBrasaemle DNussbaum R L (2002). Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein.  J Biol Chem277(8): 6344–6352

[8]

Davis R EWilliams M (2012). Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther342(3): 598–607 

[9]

de Lau L MBreteler M M(2006). Epidemiology of Parkinson’s disease. Lancet Neurol5(6): 525–535 

[10]

de Rijk M CBreteler M MGraveland G AOtt AGrobbee D Evan der Meché F GHofman A (1995). Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study.  Neurology45(12): 2143–2146 

[11]

Eberlé DHegarty BBossard PFerré  PFoufelle F (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie86(11): 839–848 

[12]

Etschmaier  KBecker TEichmann T OSchweinzer CScholler MTam-Amersdorfer CPoeckl MSchuligoi RKober AChirackal Manavalan A PRechberger G NStreith I EZechner RZimmermann RPanzenboeck U (2011). Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers. J Neurochem119(5): 1016–1028 

[13]

Exner NLutz A KHaass CWinklhofer K F (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J31(14): 3038–3062 

[14]

Fahy ESubramaniam SBrown H AGlass C KMerrill A H JrMurphy R CRaetz C RRussell D WSeyama YShaw WShimizu TSpener Fvan Meer GVanNieuwenhze M SWhite S HWitztum J LDennis E A (2005). A comprehensive classification system for lipids. J Lipid Res46(5): 839–861 

[15]

Fernández ALlacuna LFernández-Checa J CColell A (2009). Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity.  J Neurosci29(20): 6394–6405 

[16]

Fernandez-Gomez F JGalindo M FGómez-Lázaro  MYuste V JComella J XAguirre NJordán J (2005). Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br J Pharmacol144(4): 528–537 

[17]

Fujimoto TParton R G (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol3(3): 3 

[18]

Gitler A DBevis B JShorter JStrathearn K EHamamichi SSu L JCaldwell K ACaldwell G ARochet J CMcCaffery J MBarlowe CLindquist S(2008). The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA105(1): 145–150 

[19]

Guo LShestov A AWorth A JNath KNelson D SLeeper D BGlickson J  DBlair  I  A (2016).  Inhibition of  mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem291(1): 42–57 

[20]

Gutman MKearney E BSinger T P (1971). Control of succinate dehydrogenase in mitochondria. Biochemistry10(25): 4763–4770 

[21]

Hallett P JStandaert D G (2004). Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther102(2): 155–174 

[22]

Hanagasi H AAyribas DBaysal KEmre M (2005). Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci115(4): 479–493 

[23]

Hattori NTanaka MOzawa TMizuno Y (1991). Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol30(4): 563–571 

[24]

Horton J DGoldstein J LBrown M S (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest109(9): 1125–1131

[25]

IshiiTMiyazawaMOnoderaAYasudaKKawabeNKirinashizawaMYoshimuraSMaruyamaNHartmanP SIshiiN (2011). Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion11(1): 155–165

[26]

Ivatt R MWhitworth A J (2014). SREBF1 links lipogenesis to mitophagy and sporadic Parkinson disease. Autophagy10(8): 1476–1477

[27]

Jenner P (2003). Oxidative stress in Parkinson’s disease. Ann Neurol53 (Suppl 3): S26–36; discussion S36–28

[28]

Jodeiri Farshbaf MGhaedi KMegraw T LCurtiss JShirani Faradonbeh  MVaziri PNasr-Esfahani M H (2016). Does PGC1/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative Disorders? Neuromolecular Med18(1): 1–15 

[29]

Jung K HChu KLee S TPark H KKim J HKang K MKim MLee S KRoh J K (2009). Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition.  Biochem Biophys Res Commun378(3): 507–512

[30]

Khatchadourian  ABourque S DRichard V RTitorenko V IMaysinger D (2012). Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta1821(4): 607–617

[31]

Kühlbrandt W (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol13(1): 89

[32]

Langston J WBallard PTetrud J WIrwin I(1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science219(4587): 979–980 

[33]

Legros FMalka FFrachon PLombès ARojo M (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci117(Pt 13): 2653–2662 

[34]

Linderholm HEssén-Gustavsson BThornell L E (1990). Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J Intern Med228(1): 43–52 

[35]

Liot GBossy BLubitz SKushnareva YSejbuk NBossy-Wetzel E (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ16(6): 899–909

[36]

Lipton J OSahin M (2014). The neurology of mTOR. Neuron84(2): 275–291 

[37]

Liu LZhang KSandoval HYamamoto SJaiswal MSanz ELi ZHui JGraham B HQuintana ABellen H J (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell160(1-2): 177–190 

[38]

LodgeD (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology56(1): 6–21

[39]

Martin L J (2010). Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases.  Pharmaceuticals (Basel)3(4): 839–915

[40]

Meijer A J (2003). Amino acids as regulators and components of nonproteinogenic pathways.  J Nutr133(6 Suppl 1): 2057S–2062S

[41]

Okamoto KKimura ADonishi TImbe HGoda KKawanishi KTamai YSenba E (2006). Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Exp Brain Res170(3): 358–367

[42]

Owen O EKalhan S CHanson R W (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem277(34): 30409–30412

[43]

Perier CVila M (2012). Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med2(2): a009332

[44]

Porstmann TSantos C RGriffiths BCully MWu MLeevers SGriffiths J RChung Y LSchulze A (2008). SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab8(3): 224–236 

[45]

Przedborski S (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord11(Suppl 1): S3–S7 

[46]

Ralph S JMoreno-Sánchez RNeuzil JRodríguez-Enríquez S (2011). Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death.  Pharm Res28(11): 2695–2730

[47]

Recchia ADebetto PNegro AGuidolin DSkaper S DGiusti P (2004). Alpha-synuclein and Parkinson’s disease. FASEB J18(6): 617–626 

[48]

Risson VMazelin LRoceri MSanchez HMoncollin VCorneloup CRichard-Bulteau HVignaud ABaas DDefour AFreyssenet DTanti J FLe-Marchand-Brustel YFerrier BConjard-Duplany ARomanino KBauché SHantaï DMueller MKozma S CThomas GRüegg M AFerry APende MBigard XKoulmann NSchaeffer LGangloff Y G (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol187(6): 859–874 

[49]

Rothstein J D (1996). Excitotoxicity hypothesis. Neurology47: S19–25; discussion S26

[50]

Rottenberg  HGutman M (1977). Control of the rate of reverse electron transport in submitochondrial particles by the free energy. Biochemistry16(14): 3220–3227 

[51]

Schapira A HCooper J MDexter DClark J BJenner PMarsden C D (1990). Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem54(3): 823–827 

[52]

Schmitt MDehay BBezard EGarcia-Ladona F J (2016). Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse70(3): 71–86 

[53]

Schulz J B (2005). Neuronal pathology in Parkinson’s disease. Cell Tissue Res320(1): 211 

[54]

SchulzJ BFalkenburgerB H (2004). Neuronal pathology in Parkinson’s disease. Cell Tissue Res318(1): 135–147

[55]

Schwall C TGreenwood V LAlder N N (2012). The stability and activity of respiratory Complex II is cardiolipin-dependent. Biochim Biophys Acta1817(9): 1588–1596

[56]

Selman CTullet J MWieser DIrvine ELingard S JChoudhury A IClaret MAl-Qassab  HCarmignac DRamadani FWoods ARobinson I CSchuster EBatterham R LKozma S CThomas GCarling DOkkenhaug KThornton J MPartridge LGems DWithers D J (2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science326(5949): 140–144

[57]

Sun FHuo XZhai YWang AXu JSu DBartlam MRao Z (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell121(7): 1043–1057

[58]

Van Vranken J GBricker D KDephoure NGygi S PCox J EThummel C SRutter J (2014). SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab20(2): 241–252

[59]

Villa-Cuesta EHolmbeck M ARand D M (2014). Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. J Cell Sci127(Pt 10): 2282–2290 

[60]

Wübbeler J HHiessl SMeinert CPoehlein ASchuldes JDaniel RSteinbüchel A (2015). The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3′-thiodipropionic acid and hence the production of polythioesters. J Biotechnol209: 85–95

[61]

Yasuda TNakata YMochizuki H (2013).α-Synuclein and neuronal cell death. Mol Neurobiol47(2): 466–483

[62]

Younce CKolattukudy P (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem30(2): 307–320

[63]

Zhou QSheng M (2013). NMDA receptors in nervous system diseases.  Neuropharmacology74: 69–75

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (559KB)

1802

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/