Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis
Received date: 28 Aug 2016
Accepted date: 14 Nov 2016
Published date: 28 Feb 2017
Copyright
BACKGROUND: Membrane-bound intracellular organelles are biochemically distinct compartments used by eukaryotic cells for serving specialized physiological functions and organizing their internal environment. Recent studies revealed surprisingly extensive communication between these organelles and highlighted the network nature of their organization and communication. Since organization and communication of the organelles are carried out at the systems level through their networks, systems-level studies are essential for understanding the underlying mechanisms.
METHODS: We reviewed recent studies that used systems-level quantitative modeling and analysis to understand organization and communication of intracellular organelle networks.
RESULTS: We first review modeling and analysis studies on how fusion/fission and degradation/biogenesis, two essential and closely related classes of activities of individual organelles, collectively mediate the dynamic organization of their networks. We then turn to another important aspect of the dynamic organization of the organelle networks, namely how organelles are physically connected within their networks, a property referred to as the topology of the networks in mathematics, and summarize some of their distinct properties. Lastly, we briefly review modeling and analysis studies that aim to understand communication between different organelle networks, focusing on cellular calcium homeostasis as an example. We conclude with a brief discussion of future directions for research in this area.
CONCLUSIONS: Together, the reviewed studies provide critical insights into how diverse activities of individual organelles collectively mediate the organization and communication of their networks. They demonstrate the essential role of systems-level modeling and analysis in understanding complex behavior of such networks.
Qinle Ba , Ge Yang . Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis[J]. Frontiers in Biology, 2017 , 12(1) : 7 -18 . DOI: 10.1007/s11515-016-1436-9
1 |
Barabasi A L, Oltvai Z N (2004). Network biology: understanding the cell’s functional organization. Nat Rev Genet, 5(2): 101–113
|
2 |
Barrat A, Barthelemy M, Vespignani A (2008). Dynamic Processes on Complex Networks. Cambridge University Press.
|
3 |
Barsoum M J, Yuan H, Gerencser A A, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee W D, Waggoner J, Cui J, White A D, Bossy B, Martinou J C, Youle R J, Lipton S A, Ellisman M H, Perkins G A, Bossy‐Wetzel E (2006). Nitric oxide‐induced mitochondrial fission is regulated by dynamin‐related GTPases in neurons. EMBO J, 25(16): 3900–3911
|
4 |
Berridge M J, Bootman M D, Roderick H L (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 4(7): 517–529
|
5 |
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U (2006). Complex networks: Structure and dynamics. Phys Rep, 424(4-5): 175–308
|
6 |
Bonifacino J S, Glick B S (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2): 153–166
|
7 |
Brandhorst D, Zwilling D, Rizzoli S O, Lippert U, Lang T, Jahn R (2006). Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci USA, 103(8): 2701–2706
|
8 |
Brini M, Calì T, Ottolini D, Carafoli E (2013). Intracellular Calcium Homeostasis and Signaling. In: Banci L, editor. Metallomics and the Cell. Springer Netherlands, Dordrecht. 119–168
|
9 |
Bucci C, Parton R G, Mather I H, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 70(5): 715–728
|
10 |
Campbell G E H, Lowe W H, Fagan W F (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett, 10(2): 165–175
|
11 |
Carafoli E (1987). Intracellular calcium homeostasis. Annu Rev Biochem, 56(1): 395–433
|
12 |
Chan D C (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet, 46(1): 265–287
|
13 |
Chan Y H M, Marshall W F (2012). How cells know the size of their organelles. Science, 337(6099): 1186–1189
|
14 |
Chen H, Chan D C (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176
|
15 |
Collins T J, Berridge M J, Lipp P, Bootman M D (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J, 21(7): 1616–1627
|
16 |
Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider T G, Balla T, Hajnóczky G (2010). Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell, 39(1): 121–132
|
17 |
Cui J, Kaandorp J A (2006). Mathematical modeling of calcium homeostasis in yeast cells. Cell Calcium, 39(4): 337–348
|
18 |
Dupont G, Falcke M, Kirk V, Sneyd J (2016). Models of Calcium Signaling. Springer International Publishing
|
19 |
Elbaz Y, Schuldiner M (2011). Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci, 36(11): 616–623
|
20 |
Elmore S P, Qian T, Grissom S F, Lemasters J J (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J, 15(12): 2286–2287
|
21 |
Ferraro F, Kriston-Vizi J, Daniel J (2014). A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev Cell, 29(3): 292–304
|
22 |
Figge M T, Reichert A S, Meyer-Hermann M, Osiewacz H D (2012). Deceleration of fusion-fission cycles improves mitochondrial quality control during aging. PLOS Comput Biol, 8(6): e1002576
|
23 |
Foret L, Jonathan E D, Villasenor R, Collinet C, Deutsch A, Brusch L, Zerial M, Kalaididis Y, Julicher E. (2012). A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr Biol, 22(15): 1381–1390
|
24 |
Frazier A E, Kiu C, Stojanovski D, Hoogenraad Nicholas J, Ryan Michael T (2006). Mitochondrial morphology and distribution in mammalian cells. Biol Chem, 387(12): 1551–1558
|
25 |
Frederick R L, Shaw J M (2007). Moving mitochondria: establishing distribution of an essential organelle. Traffic, 8(12): 1668–1675
|
26 |
Friedman J R, Lackner L L, West M, DiBenedetto J R, Nunnari J, Voeltz G K (2011). ER tubules mark sites of mitochondrial division. Science, 334(6054): 358–362
|
27 |
Gautreau A, Oguievetskaia K, Ungermann C (2014). Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol, 6(3): a016832
|
28 |
Gomes L C, Benedetto G D, Scorrano L (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol, 13(5): 589–598
|
29 |
Grant B D, Donaldson J G (2009). Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol, 10(9): 597–608
|
30 |
Helle S C J, Kanfer G, Kolar K, Lang A, Michel A H, Kornmann B (2013). Organization and function of membrane contact sites. Biochimica et Biophysica Acta (BBA) - Mol Cell Res, 1833(11): 2526–2541
|
31 |
Hoppins S, Lackner L, Nunnari J (2007). The machines that divide and fuse mitochondria. Annu Rev Biochem, 76(1): 751–780
|
32 |
Huotari J, Helenius A (2011). Endosome maturation. EMBO J, 30(17): 3481–3500
|
33 |
Jakobs S, Schauss A C, Hell S W (2003). Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett, 554(1-2): 194–200
|
34 |
Jendrach M, Pohl S, Vöth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005). Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev, 126(6-7): 813–821
|
35 |
Kang J S, Tian J H, Pan P Y, Zald P, Li C, Deng C, Sheng Z H (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell, 132(1): 137–148
|
36 |
Karbowski M, Arnoult D, Chen H, Chan D C, Smith C L, Youle R J (2004). Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol, 164(4): 493–499
|
37 |
Klecker T, Böckler S, Westermann B (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol, 24(9): 537–545
|
38 |
Klumperman J (2011). Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol, 3(7): a005181
|
39 |
Knoblach B, Rachubinski R A (2015). Sharing the cell’s bounty – organelle inheritance in yeast. J Cell Sci, 128(4): 621–630
|
40 |
Korolchuk V I, Saiki S, Lichtenberg M, Siddiqi F H, Roberts E A, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies F M, O’Kane C J, Deretic V, Rubinsztein D C (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol, 13(4): 453–460
|
41 |
Kuznetsov A V, Hermann M, Saks V, Hengster P, Margreiter R (2009). The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol, 41(10): 1928–1939
|
42 |
Kuznetsov A V, Margreiter R (2009). Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci, 10(4): 1911–1929
|
43 |
Labbé K, Murley A, Nunnari J (2014). Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol, 30(1): 357–391
|
44 |
Lee M C S, Miller E A, Goldberg J, Orci L, Schekman R (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol, 20(1): 87–123
|
45 |
Levine T P, Patel S (2016). Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol, 39: 77–83
|
46 |
Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H (2016). A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol, 18(4): 404–417
|
47 |
Liu X, Weaver D, Shirihai O, Hajnóczky G (2009). Mitochondrial ‘kiss‐and‐run’: interplay between mitochondrial motility and fusion–fission dynamics. EMBO J, 28(20): 3074–3089
|
48 |
Luzio J P, Pryor P R, Bright N A (2007). Lysosomes: fusion and function. Nat Rev Mol Cell Biol, 8(8): 622–632
|
49 |
Ma X, Gong N, Zhong L, Sun J, Liang X J (2016). Future of nanotherapeutics: targeting the cellular sub-organelles. Biomat, 97: 10–21
|
50 |
Marshall W F (2015). How cells measure length on subcellular scales. Trends Cell Biol, 25(12): 760–768
|
51 |
Martens S, McMahon H T (2008). Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol, 9(7): 543–556
|
52 |
McNew J A, Sondermann H, Lee T, Stern M, Brandizzi F (2013). GTP-dependent membrane fusion. Annu Rev Cell Dev Biol, 29(1): 529–550
|
53 |
Means S, Smith A J, Shepherd J, Shadid J, Fowler J, Wojcikiewicz R J H, Mazel T, Smith G D, Wilson B S (2006). Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J, 91(2): 537–557
|
54 |
Mizushima N (2007). Autophagy: process and function. Genes Dev, 21(22): 2861–2873
|
55 |
Mouli P K, Twig G, Shirihai O S (2009). Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J, 96(9): 3509–3518
|
56 |
Murley A, Nunnari J (2016). The emerging network of mitochondria-organelle contacts. Mol Cell, 61(5): 648–653
|
57 |
Nakamura N, Wei J H, Seemann J (2012). Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol, 24(4): 467–474
|
58 |
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467
|
59 |
Namtame A, Chen S H (2016). Agent-based Modeling and Network Analysis. Oxford University Press
|
60 |
Newman M E J (2003). The structure and function of complex networks. SIAM Rev, 45(2): 167–256
|
61 |
Newman M E J 2010. Networks. Oxford University Press.
|
62 |
Ni H M, Williams J A, Ding W X (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 4: 6–13
|
63 |
Nunnari J, Walter P (1996). Regulation of organelle biogenesis. Cell, 84(3): 389–394
|
64 |
Okamoto K, Shaw J M (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet, 39(1): 503–536
|
65 |
Palikaras K, Tavernarakis N (2014). Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol, 56: 182–188
|
66 |
Patel P K, Shirihai O, Huang K C (2013). Optimal dynamics for quality control in spatially distributed mitochondrial networks. PLOS Comput Biol, 9(7): e1003108
|
67 |
Penny C J, Kilpatrick B S, Han J M, Sneyd J, Patel S (2014). A computational model of lysosome–ER Ca2+ microdomains. J Cell Sci, 127(13): 2934–2943
|
68 |
Phillips M J, Voeltz G K (2016). Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol, 17(2): 69–82
|
69 |
Posakony J W, England J M, Attardi G (1977). Mitochondrial growth and division during the cell cycle in HeLa cells. J Cell Biol, 74(2): 468–491
|
70 |
Priault M, Salin B, Schaeffer J, Vallette F M, di Rago J P, Martinou J C (2005). Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ, 12(12): 1613–1621
|
71 |
Prinz W A (2014). Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol, 205(6): 759–769
|
72 |
Rafelski S M, Viana M P, Zhang Y, Chan Y H M, Thorn K S, Yam P, Fung J C, Li H, Costa L D F, Marshall W F (2012). Mitochondrial network size scaling in budding yeast. Science, 338(6108): 822–824
|
73 |
Rambold A S, Kostelecky B, Elia N, Lippincott-Schwartz J (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA, 108(25): 10190–10195
|
74 |
Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell, 122(5): 735–749
|
75 |
Rohn J L, Patel J V, Neumann B, Bulkescher J, Mchedlishvili N, McMullan R C, Quintero O A, Ellenberg J, Baum B (2014). Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr Biol, 24(21): 2598–2605
|
76 |
Rutter G A, Rizzuto R (2000). Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci, 25(5): 215–221
|
77 |
Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105
|
78 |
Schrader M, Godinho L F, Costello J, Islinger M (2015). The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol, 3: 56
|
79 |
Sengupta D, Linstedt A D (2011). Control of organelle size: The Golgi complex. Annu Rev Cell Dev Biol, 27(1): 57–77
|
80 |
Sheng Z H (2014). Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol, 204(7): 1087–1098
|
81 |
Sheng Z H, Cai Q (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci, 13(2): 77–93
|
82 |
Shneyer B I, Ušaj M, Henn A (2016). Myo19 is an outer mitochondrial membrane motor and effector of starvation-induced filopodia. J Cell Sci, 129(3): 543–556
|
83 |
Sukhorukov V M, Dikov D, Reichert A S, Meyer-Hermann M (2012). Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLOS Comput Biol, 8(10): e1002745
|
84 |
Sukhorukov V M, Meyer-Hermann M (2015). Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton. Sci Rep, 5: 13924
|
85 |
Tam Z Y, Gruber J, Halliwell B, Gunawan R (2013). Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance. PLoS One, 8(10): e76230
|
86 |
Torchilin V P (2006). Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng, 8(1): 343–375
|
87 |
Twig G, Elorza A, Molina A J A, Mohamed H, Wikstrom J D, Walzer G, Stiles L, Haigh S E, Katz S, Las G, Alroy J, Wu M, Py B F, Yuan J, Deeney J T, Corkey B E, Shirihai O S (2008a). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J, 27(2): 433–446
|
88 |
Twig G, Hyde B, Shirihai O S (2008b). Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777(9): 1092–1097
|
89 |
Twig G, Liu X, Liesa M, Wikstrom J D, Molina A J A, Las G, Yaniv G, Hajnóczky G, Shirihai O S (2010). Biophysical properties of mitochondrial fusion events in pancreatic β-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol, 299(2): C477–C487
|
90 |
Warren G, Wickner W (1996). Organelle inheritance. Cell, 84(3): 395–400
|
91 |
Westrate L M, Lee J E, Prinz W A, Voeltz G K (2015). Form follows function: The importance of endoplasmic reticulum shape. Annu Rev Biochem, 84(1): 791–811
|
92 |
Wikstrom J D, Twig G, Shirihai O S (2009). What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol, 41(10): 1914–1927
|
93 |
Youle R J, Narendra D P (2011). Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 12(1): 9–14
|
94 |
Youle R J, van der Bliek A M (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098): 1062–1065
|
95 |
Yu Y, Lee H C, Chen K C, Suhan J, Qiu M, Ba Q, Yang G (2016). Inner membrane fusion mediates spatial distribution of axonal mitochondria. Sci Rep, 6: 18981
|
96 |
Zhu X, Gerstein M, Snyder M (2007). Getting connected: analysis and principles of biological networks. Genes Dev, 21: 1010–1024
|
/
〈 | 〉 |