Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis
Qinle Ba, Ge Yang
Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis
BACKGROUND: Membrane-bound intracellular organelles are biochemically distinct compartments used by eukaryotic cells for serving specialized physiological functions and organizing their internal environment. Recent studies revealed surprisingly extensive communication between these organelles and highlighted the network nature of their organization and communication. Since organization and communication of the organelles are carried out at the systems level through their networks, systems-level studies are essential for understanding the underlying mechanisms.
METHODS: We reviewed recent studies that used systems-level quantitative modeling and analysis to understand organization and communication of intracellular organelle networks.
RESULTS: We first review modeling and analysis studies on how fusion/fission and degradation/biogenesis, two essential and closely related classes of activities of individual organelles, collectively mediate the dynamic organization of their networks. We then turn to another important aspect of the dynamic organization of the organelle networks, namely how organelles are physically connected within their networks, a property referred to as the topology of the networks in mathematics, and summarize some of their distinct properties. Lastly, we briefly review modeling and analysis studies that aim to understand communication between different organelle networks, focusing on cellular calcium homeostasis as an example. We conclude with a brief discussion of future directions for research in this area.
CONCLUSIONS: Together, the reviewed studies provide critical insights into how diverse activities of individual organelles collectively mediate the organization and communication of their networks. They demonstrate the essential role of systems-level modeling and analysis in understanding complex behavior of such networks.
intracellular organelle / organelle network / organelle communication / network analysis / systems modeling
[1] |
Barabasi A L, Oltvai Z N (2004). Network biology: understanding the cell’s functional organization. Nat Rev Genet, 5(2): 101–113
CrossRef
Google scholar
|
[2] |
Barrat A, Barthelemy M, Vespignani A (2008). Dynamic Processes on Complex Networks. Cambridge University Press.
|
[3] |
Barsoum M J, Yuan H, Gerencser A A, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee W D, Waggoner J, Cui J, White A D, Bossy B, Martinou J C, Youle R J, Lipton S A, Ellisman M H, Perkins G A, Bossy‐Wetzel E (2006). Nitric oxide‐induced mitochondrial fission is regulated by dynamin‐related GTPases in neurons. EMBO J, 25(16): 3900–3911
CrossRef
Google scholar
|
[4] |
Berridge M J, Bootman M D, Roderick H L (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 4(7): 517–529
CrossRef
Google scholar
|
[5] |
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U (2006). Complex networks: Structure and dynamics. Phys Rep, 424(4-5): 175–308
CrossRef
Google scholar
|
[6] |
Bonifacino J S, Glick B S (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2): 153–166
CrossRef
Google scholar
|
[7] |
Brandhorst D, Zwilling D, Rizzoli S O, Lippert U, Lang T, Jahn R (2006). Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci USA, 103(8): 2701–2706
CrossRef
Google scholar
|
[8] |
Brini M, Calì T, Ottolini D, Carafoli E (2013). Intracellular Calcium Homeostasis and Signaling. In: Banci L, editor. Metallomics and the Cell. Springer Netherlands, Dordrecht. 119–168
|
[9] |
Bucci C, Parton R G, Mather I H, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 70(5): 715–728
CrossRef
Google scholar
|
[10] |
Campbell G E H, Lowe W H, Fagan W F (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett, 10(2): 165–175
CrossRef
Google scholar
|
[11] |
Carafoli E (1987). Intracellular calcium homeostasis. Annu Rev Biochem, 56(1): 395–433
CrossRef
Google scholar
|
[12] |
Chan D C (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet, 46(1): 265–287
CrossRef
Google scholar
|
[13] |
Chan Y H M, Marshall W F (2012). How cells know the size of their organelles. Science, 337(6099): 1186–1189
CrossRef
Google scholar
|
[14] |
Chen H, Chan D C (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176
CrossRef
Google scholar
|
[15] |
Collins T J, Berridge M J, Lipp P, Bootman M D (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J, 21(7): 1616–1627
CrossRef
Google scholar
|
[16] |
Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider T G, Balla T, Hajnóczky G (2010). Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell, 39(1): 121–132
CrossRef
Google scholar
|
[17] |
Cui J, Kaandorp J A (2006). Mathematical modeling of calcium homeostasis in yeast cells. Cell Calcium, 39(4): 337–348
CrossRef
Google scholar
|
[18] |
Dupont G, Falcke M, Kirk V, Sneyd J (2016). Models of Calcium Signaling. Springer International Publishing
|
[19] |
Elbaz Y, Schuldiner M (2011). Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci, 36(11): 616–623
CrossRef
Google scholar
|
[20] |
Elmore S P, Qian T, Grissom S F, Lemasters J J (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J, 15(12): 2286–2287
|
[21] |
Ferraro F, Kriston-Vizi J, Daniel J (2014). A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev Cell, 29(3): 292–304
CrossRef
Google scholar
|
[22] |
Figge M T, Reichert A S, Meyer-Hermann M, Osiewacz H D (2012). Deceleration of fusion-fission cycles improves mitochondrial quality control during aging. PLOS Comput Biol, 8(6): e1002576
CrossRef
Google scholar
|
[23] |
Foret L, Jonathan E D, Villasenor R, Collinet C, Deutsch A, Brusch L, Zerial M, Kalaididis Y, Julicher E. (2012). A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr Biol, 22(15): 1381–1390
CrossRef
Google scholar
|
[24] |
Frazier A E, Kiu C, Stojanovski D, Hoogenraad Nicholas J, Ryan Michael T (2006). Mitochondrial morphology and distribution in mammalian cells. Biol Chem, 387(12): 1551–1558
CrossRef
Google scholar
|
[25] |
Frederick R L, Shaw J M (2007). Moving mitochondria: establishing distribution of an essential organelle. Traffic, 8(12): 1668–1675
CrossRef
Google scholar
|
[26] |
Friedman J R, Lackner L L, West M, DiBenedetto J R, Nunnari J, Voeltz G K (2011). ER tubules mark sites of mitochondrial division. Science, 334(6054): 358–362
CrossRef
Google scholar
|
[27] |
Gautreau A, Oguievetskaia K, Ungermann C (2014). Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol, 6(3): a016832
CrossRef
Google scholar
|
[28] |
Gomes L C, Benedetto G D, Scorrano L (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol, 13(5): 589–598
CrossRef
Google scholar
|
[29] |
Grant B D, Donaldson J G (2009). Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol, 10(9): 597–608
CrossRef
Google scholar
|
[30] |
Helle S C J, Kanfer G, Kolar K, Lang A, Michel A H, Kornmann B (2013). Organization and function of membrane contact sites. Biochimica et Biophysica Acta (BBA) - Mol Cell Res, 1833(11): 2526–2541
|
[31] |
Hoppins S, Lackner L, Nunnari J (2007). The machines that divide and fuse mitochondria. Annu Rev Biochem, 76(1): 751–780
CrossRef
Google scholar
|
[32] |
Huotari J, Helenius A (2011). Endosome maturation. EMBO J, 30(17): 3481–3500
CrossRef
Google scholar
|
[33] |
Jakobs S, Schauss A C, Hell S W (2003). Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett, 554(1-2): 194–200
CrossRef
Google scholar
|
[34] |
Jendrach M, Pohl S, Vöth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005). Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev, 126(6-7): 813–821
CrossRef
Google scholar
|
[35] |
Kang J S, Tian J H, Pan P Y, Zald P, Li C, Deng C, Sheng Z H (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell, 132(1): 137–148
CrossRef
Google scholar
|
[36] |
Karbowski M, Arnoult D, Chen H, Chan D C, Smith C L, Youle R J (2004). Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol, 164(4): 493–499
CrossRef
Google scholar
|
[37] |
Klecker T, Böckler S, Westermann B (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol, 24(9): 537–545
CrossRef
Google scholar
|
[38] |
Klumperman J (2011). Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol, 3(7): a005181
CrossRef
Google scholar
|
[39] |
Knoblach B, Rachubinski R A (2015). Sharing the cell’s bounty – organelle inheritance in yeast. J Cell Sci, 128(4): 621–630
CrossRef
Google scholar
|
[40] |
Korolchuk V I, Saiki S, Lichtenberg M, Siddiqi F H, Roberts E A, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies F M, O’Kane C J, Deretic V, Rubinsztein D C (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol, 13(4): 453–460
CrossRef
Google scholar
|
[41] |
Kuznetsov A V, Hermann M, Saks V, Hengster P, Margreiter R (2009). The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol, 41(10): 1928–1939
CrossRef
Google scholar
|
[42] |
Kuznetsov A V, Margreiter R (2009). Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci, 10(4): 1911–1929
CrossRef
Google scholar
|
[43] |
Labbé K, Murley A, Nunnari J (2014). Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol, 30(1): 357–391
CrossRef
Google scholar
|
[44] |
Lee M C S, Miller E A, Goldberg J, Orci L, Schekman R (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol, 20(1): 87–123
CrossRef
Google scholar
|
[45] |
Levine T P, Patel S (2016). Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol, 39: 77–83
CrossRef
Google scholar
|
[46] |
Li X, Rydzewski N, Hider A, Zhang X, Yang J, Wang W, Gao Q, Cheng X, Xu H (2016). A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat Cell Biol, 18(4): 404–417
CrossRef
Google scholar
|
[47] |
Liu X, Weaver D, Shirihai O, Hajnóczky G (2009). Mitochondrial ‘kiss‐and‐run’: interplay between mitochondrial motility and fusion–fission dynamics. EMBO J, 28(20): 3074–3089
CrossRef
Google scholar
|
[48] |
Luzio J P, Pryor P R, Bright N A (2007). Lysosomes: fusion and function. Nat Rev Mol Cell Biol, 8(8): 622–632
CrossRef
Google scholar
|
[49] |
Ma X, Gong N, Zhong L, Sun J, Liang X J (2016). Future of nanotherapeutics: targeting the cellular sub-organelles. Biomat, 97: 10–21
CrossRef
Google scholar
|
[50] |
Marshall W F (2015). How cells measure length on subcellular scales. Trends Cell Biol, 25(12): 760–768
CrossRef
Google scholar
|
[51] |
Martens S, McMahon H T (2008). Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol, 9(7): 543–556
CrossRef
Google scholar
|
[52] |
McNew J A, Sondermann H, Lee T, Stern M, Brandizzi F (2013). GTP-dependent membrane fusion. Annu Rev Cell Dev Biol, 29(1): 529–550
CrossRef
Google scholar
|
[53] |
Means S, Smith A J, Shepherd J, Shadid J, Fowler J, Wojcikiewicz R J H, Mazel T, Smith G D, Wilson B S (2006). Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J, 91(2): 537–557
CrossRef
Google scholar
|
[54] |
Mizushima N (2007). Autophagy: process and function. Genes Dev, 21(22): 2861–2873
CrossRef
Google scholar
|
[55] |
Mouli P K, Twig G, Shirihai O S (2009). Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J, 96(9): 3509–3518
CrossRef
Google scholar
|
[56] |
Murley A, Nunnari J (2016). The emerging network of mitochondria-organelle contacts. Mol Cell, 61(5): 648–653
CrossRef
Google scholar
|
[57] |
Nakamura N, Wei J H, Seemann J (2012). Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol, 24(4): 467–474
CrossRef
Google scholar
|
[58] |
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467
CrossRef
Google scholar
|
[59] |
Namtame A, Chen S H (2016). Agent-based Modeling and Network Analysis. Oxford University Press
|
[60] |
Newman M E J (2003). The structure and function of complex networks. SIAM Rev, 45(2): 167–256
CrossRef
Google scholar
|
[61] |
Newman M E J 2010. Networks. Oxford University Press.
|
[62] |
Ni H M, Williams J A, Ding W X (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 4: 6–13
CrossRef
Google scholar
|
[63] |
Nunnari J, Walter P (1996). Regulation of organelle biogenesis. Cell, 84(3): 389–394
CrossRef
Google scholar
|
[64] |
Okamoto K, Shaw J M (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet, 39(1): 503–536
CrossRef
Google scholar
|
[65] |
Palikaras K, Tavernarakis N (2014). Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol, 56: 182–188
CrossRef
Google scholar
|
[66] |
Patel P K, Shirihai O, Huang K C (2013). Optimal dynamics for quality control in spatially distributed mitochondrial networks. PLOS Comput Biol, 9(7): e1003108
CrossRef
Google scholar
|
[67] |
Penny C J, Kilpatrick B S, Han J M, Sneyd J, Patel S (2014). A computational model of lysosome–ER Ca2+ microdomains. J Cell Sci, 127(13): 2934–2943
CrossRef
Google scholar
|
[68] |
Phillips M J, Voeltz G K (2016). Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol, 17(2): 69–82
CrossRef
Google scholar
|
[69] |
Posakony J W, England J M, Attardi G (1977). Mitochondrial growth and division during the cell cycle in HeLa cells. J Cell Biol, 74(2): 468–491
CrossRef
Google scholar
|
[70] |
Priault M, Salin B, Schaeffer J, Vallette F M, di Rago J P, Martinou J C (2005). Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ, 12(12): 1613–1621
CrossRef
Google scholar
|
[71] |
Prinz W A (2014). Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol, 205(6): 759–769
CrossRef
Google scholar
|
[72] |
Rafelski S M, Viana M P, Zhang Y, Chan Y H M, Thorn K S, Yam P, Fung J C, Li H, Costa L D F, Marshall W F (2012). Mitochondrial network size scaling in budding yeast. Science, 338(6108): 822–824
CrossRef
Google scholar
|
[73] |
Rambold A S, Kostelecky B, Elia N, Lippincott-Schwartz J (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA, 108(25): 10190–10195
CrossRef
Google scholar
|
[74] |
Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell, 122(5): 735–749
CrossRef
Google scholar
|
[75] |
Rohn J L, Patel J V, Neumann B, Bulkescher J, Mchedlishvili N, McMullan R C, Quintero O A, Ellenberg J, Baum B (2014). Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr Biol, 24(21): 2598–2605
CrossRef
Google scholar
|
[76] |
Rutter G A, Rizzuto R (2000). Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci, 25(5): 215–221
CrossRef
Google scholar
|
[77] |
Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105
CrossRef
Google scholar
|
[78] |
Schrader M, Godinho L F, Costello J, Islinger M (2015). The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol, 3: 56
CrossRef
Google scholar
|
[79] |
Sengupta D, Linstedt A D (2011). Control of organelle size: The Golgi complex. Annu Rev Cell Dev Biol, 27(1): 57–77
CrossRef
Google scholar
|
[80] |
Sheng Z H (2014). Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol, 204(7): 1087–1098
CrossRef
Google scholar
|
[81] |
Sheng Z H, Cai Q (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci, 13(2): 77–93
|
[82] |
Shneyer B I, Ušaj M, Henn A (2016). Myo19 is an outer mitochondrial membrane motor and effector of starvation-induced filopodia. J Cell Sci, 129(3): 543–556
CrossRef
Google scholar
|
[83] |
Sukhorukov V M, Dikov D, Reichert A S, Meyer-Hermann M (2012). Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLOS Comput Biol, 8(10): e1002745
CrossRef
Google scholar
|
[84] |
Sukhorukov V M, Meyer-Hermann M (2015). Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton. Sci Rep, 5: 13924
CrossRef
Google scholar
|
[85] |
Tam Z Y, Gruber J, Halliwell B, Gunawan R (2013). Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance. PLoS One, 8(10): e76230
CrossRef
Google scholar
|
[86] |
Torchilin V P (2006). Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng, 8(1): 343–375
CrossRef
Google scholar
|
[87] |
Twig G, Elorza A, Molina A J A, Mohamed H, Wikstrom J D, Walzer G, Stiles L, Haigh S E, Katz S, Las G, Alroy J, Wu M, Py B F, Yuan J, Deeney J T, Corkey B E, Shirihai O S (2008a). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J, 27(2): 433–446
CrossRef
Google scholar
|
[88] |
Twig G, Hyde B, Shirihai O S (2008b). Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777(9): 1092–1097
CrossRef
Google scholar
|
[89] |
Twig G, Liu X, Liesa M, Wikstrom J D, Molina A J A, Las G, Yaniv G, Hajnóczky G, Shirihai O S (2010). Biophysical properties of mitochondrial fusion events in pancreatic β-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol, 299(2): C477–C487
CrossRef
Google scholar
|
[90] |
Warren G, Wickner W (1996). Organelle inheritance. Cell, 84(3): 395–400
CrossRef
Google scholar
|
[91] |
Westrate L M, Lee J E, Prinz W A, Voeltz G K (2015). Form follows function: The importance of endoplasmic reticulum shape. Annu Rev Biochem, 84(1): 791–811
CrossRef
Google scholar
|
[92] |
Wikstrom J D, Twig G, Shirihai O S (2009). What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol, 41(10): 1914–1927
CrossRef
Google scholar
|
[93] |
Youle R J, Narendra D P (2011). Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 12(1): 9–14
CrossRef
Google scholar
|
[94] |
Youle R J, van der Bliek A M (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098): 1062–1065
CrossRef
Google scholar
|
[95] |
Yu Y, Lee H C, Chen K C, Suhan J, Qiu M, Ba Q, Yang G (2016). Inner membrane fusion mediates spatial distribution of axonal mitochondria. Sci Rep, 6: 18981
CrossRef
Google scholar
|
[96] |
Zhu X, Gerstein M, Snyder M (2007). Getting connected: analysis and principles of biological networks. Genes Dev, 21: 1010–1024
|
/
〈 | 〉 |