Rhizoplane microbiota of superior wheat varieties possess enhanced plant growth-promoting abilities
Received date: 04 Jul 2016
Accepted date: 02 Oct 2016
Published date: 26 Dec 2016
Copyright
BACKGROUND: Microbes affect the growth of plants. In this study, the diversity and plant growth-supporting activities of wheat rhizospheric bacteria were examined.
METHODS: Sampling was performed thrice at different phases of plant growth. Microbes associated with the rhizoplane of three wheat varieties (Seher, Lasani, and Faisalabad) were cultured and assessed for their plant growth-promoting abilities based on auxin production, hydrogen cyanide production, phosphate solubilization, and nitrogen fixation.
RESULTS: Bacterial load (CFU/mL) declined, and the succession of bacterial diversity occurred as the plants aged. Most auxin-producing bacteria and the highest concentrations of auxin (77 µg/mL) were observed during the second sampling point at the tillering stage. The Seher variety harbored the most auxin-producing as well as phosphate-solubilizing bacteria. Most of the bacteria belonged to Bacillus and Pseudomonas. Planomicrobium, Serratia, Rhizobium, Brevundimonas, Stenotrophomonas, and Exiguobacterium sp. were also found.
CONCLUSIONS: These results suggest that the rhizoplane microbiota associated with higher-yield plant varieties have better plant growth-promoting abilities as compared to the microbiota associated with lower-yield plant varieties.
Key words: wheat; microbiota; rhizoplane; auxin; phosphate solubilization
Ayesha Siddiqa , Yasir Rehman , Shahida Hasnain . Rhizoplane microbiota of superior wheat varieties possess enhanced plant growth-promoting abilities[J]. Frontiers in Biology, 2016 , 11(6) : 481 -487 . DOI: 10.1007/s11515-016-1426-y
1 |
Asanuma S, Tanaka H, Yatazawa M (1979). Rhizoplane microorganisms of rice seedlings as examined by scanning electron microscopy. Soil Sci Plant Nutr, 25(4): 539–551
|
2 |
Benson H J (2005). Bensonʼs microbiological applications: laboratory manual in general microbiology. Boston: McGraw-Hill Higher Education
|
3 |
Berg G (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol, 84(1): 11–18
|
4 |
Bernbom N, Ng Y Y, Kjelleberg S, Harder T, Gram L (2011). Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol, 77(24): 8557–8567
|
5 |
Cappuccino J G, Sherman N (2007). Microbiology: A Laboratory Manual. USA: Pearson Benjamin Cummings
|
6 |
Curl E A, Truelove B (1986). The rhizosphere. Berlin: Springer-Verlag
|
7 |
Felsenstein J (1985). Confidence limits on phylogenies: an approach using the Bootstrap. Evolution, 39(4): 783–791
|
8 |
Goldstein A H (1986). Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. Am J Altern Agric, 1(02): 51–57
|
9 |
Gordon S A, Weber R P (1951). Colorimetric estimation of indole acetic acid. Plant Physiol, 26(1): 192–195
|
10 |
Iqbal U, Jamil N, Ali I, Hasnain S (2010). Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Ann Microbiol, 60(2): 243–248
|
11 |
Khan Z, Kim S G, Jeon Y H, Khan H U, Son S H, Kim Y H (2008). A plant growth promoting Rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol, 99(8): 3016–3023
|
12 |
Lægreid M, Bøckman O C, Kaarstad O (1999). Agriculture, fertilizers, and the environment. Euro J Soil Sci, 51(3): 541–549 DOI: 10.1046/j.1365-2389.2000.00334-2.x
|
13 |
Lorck H (1948). Production of hydrocyanic acid by bacteria. Physiol Plant, 1(2): 142–146
|
14 |
Porsby C H, Nielsen K F, Gram L (2008). Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish Turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ Microbiol, 74(23): 7356–7364
|
15 |
Qureshi M A, Ahmad Z A, Akhtar N, Iqbal A, Mujeeb F, Shakir M A (2012). Role of phosphate solubilizing bacteria (Psb) in enhancing p availability and promoting cotton growth. J Anim Plant Sci., 22: 204–210
|
16 |
Rodríguez H, Fraga R (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv, 17(4-5): 319–339
|
17 |
Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406–425
|
18 |
Sylvia D M, Fuhrmann J J, Hartel P, Zuberer D A (2005). Principles and applications of soil microbiology. New Age Intern, 31(2): 11–68
|
19 |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10): 2731–2739
|
20 |
Teale W D, Paponov I A, Palme K (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol, 7(11): 847–859
|
21 |
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898): 671–677
|
22 |
Vessey J K (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255(2): 571–586
|
/
〈 |
|
〉 |