Mechanisms of genome instability in Hutchinson-Gilford progeria
Received date: 31 Aug 2016
Accepted date: 10 Nov 2016
Published date: 28 Feb 2017
Copyright
BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.
OBJECTIVE: Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.
RESULTS AND CONCLUSION: In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.
Key words: HGPS; DDR; DSB repair
Haoyue Zhang , Kan Cao . Mechanisms of genome instability in Hutchinson-Gilford progeria[J]. Frontiers in Biology, 2017 , 12(1) : 49 -62 . DOI: 10.1007/s11515-016-1435-x
1 |
Ayrapetov M K, Gursoy-Yuzugullu O, Xu C, Xu Y, Price B D (2014). DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci USA, 111(25): 9169–9174
|
2 |
Bakkenist C J, Kastan M B (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922): 499–506
|
3 |
Bird A W, Yu D Y, Pray-Grant M G, Qiu Q, Harmon K E, Megee P C, Grant P A, Smith M M, Christman M F (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature, 419(6905): 411–415
|
4 |
Bothmer A, Robbiani D F, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig M C (2010). 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med, 207(4): 855–865
|
5 |
Branzei D, Foiani M (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol, 17(6): 568–575
|
6 |
Branzei D, Foiani M (2010). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol, 11(3): 208–219
|
7 |
Brosh R M Jr, Bellani M, Liu Y, Seidman M M (2016). Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev: S1568-1637(16)30081-2
|
8 |
Bunting S F, Callén E, Wong N, Chen H T, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng C X, Finkel T, Nussenzweig M, Stark J M, Nussenzweig A (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 141(2): 243–254
|
9 |
Burma S, Chen B P, Murphy M, Kurimasa A, Chen D J (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276(45): 42462–42467
|
10 |
Cao K, Capell B C, Erdos M R, Djabali K, Collins F S (2007). A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA, 104(12): 4949–4954
|
11 |
Cao K, Graziotto J J, Blair C D, Mazzulli J R, Erdos M R, Krainc D, Collins F S (2011). Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med, 3(89): 89ra58
|
12 |
Capell B C, Collins F S (2006). Human laminopathies: nuclei gone genetically awry. Nat Rev Genet, 7(12): 940–952
|
13 |
Capell B C, Erdos M R, Madigan J P, Fiordalisi J J, Varga R, Conneely K N, Gordon L B, Der C J, Cox A D, Collins F S (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 102(36): 12879–12884
|
14 |
Capell B C, Olive M, Erdos M R, Cao K, Faddah D A, Tavarez U L, Conneely K N, Qu X, San H, Ganesh S K, Chen X, Avallone H, Kolodgie F D, Virmani R, Nabel E G, Collins F S (2008). A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA, 105(41): 15902–15907
|
15 |
Chapman J R, Jackson S P (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep, 9(8): 795–801
|
16 |
Chapman J R, Taylor M R, Boulton S J (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol Cell, 47(4): 497–510
|
17 |
Chen J H, Hales C N, Ozanne S E (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res, 35(22): 7417–7428
|
18 |
Childs B G, Baker D J, Kirkland J L, Campisi J, van Deursen J M (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep, 15(11): 1139–1153
|
19 |
Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204
|
20 |
Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214
|
21 |
d’Adda di Fagagna F (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 8(7): 512–522
|
22 |
D’Andrea A D, Grompe M (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer, 3(1): 23–34
|
23 |
Das A, Grotsky D A, Neumann M A, Kreienkamp R, Gonzalez-Suarez I, Redwood A B, Kennedy B K, Stewart C L, Gonzalo S (2013). Lamin A Dexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus, 4(5): 410–419
|
24 |
De Bont R, van Larebeke N (2004). Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19(3): 169–185
|
25 |
Dobbin M M, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao P C, Qiu Y, Zhao Y, Tsai L H (2013). SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci, 16(8): 1008–1015
|
26 |
Eriksson M, Brown W T, Gordon L B, Glynn M W, Singer J, Scott L, Erdos M R, Robbins C M, Moses T Y, Berglund P, Dutra A, Pak E, Durkin S, Csoka A B, Boehnke M, Glover T W, Collins F S (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937): 293–298
|
27 |
Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young J T, Tkáč J, Cook M A, Rosebrock A P, Munro M, Canny M D, Xu D, Durocher D (2013). A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell, 49(5): 872–883
|
28 |
Flynn R L, Zou L (2011). ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci, 36(3): 133–140
|
29 |
Fradet-Turcotte A, Canny M D, Escribano-Díaz C, Orthwein A, Leung C C, Huang H, Landry M C, Kitevski-LeBlanc J, Noordermeer S M, Sicheri F, Durocher D (2013). 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 499(7456): 50–54
|
30 |
Friedberg E C, McDaniel L D, Schultz R A (2004). The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev, 14(1): 5–10
|
31 |
Garinis G A, van der Horst G T, Vijg J, Hoeijmakers J H (2008). DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol, 10(11): 1241–1247
|
32 |
Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z (2015). Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Reports, 13(7): 1396–1406
|
33 |
Gibbs-Seymour I, Markiewicz E, Bekker-Jensen S, Mailand N, Hutchison C J (2015). Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell, 14(2): 162–169
|
34 |
Goldman R D, Shumaker D K, Erdos M R, Eriksson M, Goldman A E, Gordon L B, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins F S (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 101(24): 8963–8968
|
35 |
Gonzalez-Suarez I, Redwood A B, Gonzalo S (2009). Loss of A-type lamins and genomic instability. Cell Cycle, 8(23): 3860–3865
|
36 |
Gonzalez-Suarez I, Redwood A B, Grotsky D A, Neumann M A, Cheng E H, Stewart C L, Dusso A, Gonzalo S (2011). A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J, 30(16): 3383–3396
|
37 |
Gonzalo S (2014). DNA damage and lamins. Adv Exp Med Biol, 773: 377–399
|
38 |
Gonzalo S, Kreienkamp R (2015). DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol, 34: 75–83
|
39 |
Gonzalo S, Kreienkamp R, Askjaer P (2016). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Res Rev: S1568-1637(16)30134-9
|
40 |
Gordon L B, Kleinman M E, Miller D T, Neuberg D S, Giobbie-Hurder A, Gerhard-Herman M, Smoot L B, Gordon C M, Cleveland R, Snyder B D, Fligor B, Bishop W R, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich N J, Nazarian A, Liang M G, Huh S Y, Schwartzman A, Kieran M W (2012). Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 109(41): 16666–16671
|
41 |
Gordon L B, Massaro J, D’Agostino R B Sr, Campbell S E, Brazier J, Brown W T, Kleinman M E, Kieran M W, and the Progeria Clinical Trials Collaborative (2014). Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation, 130(1): 27–34
|
42 |
Gordon L B, McCarten K M, Giobbie-Hurder A, Machan J T, Campbell S E, Berns S D, Kieran M W (2007). Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics, 120(4): 824–833
|
43 |
Gupta A, Hunt C R, Chakraborty S, Pandita R K, Yordy J, Ramnarain D B, Horikoshi N, Pandita T K (2014). Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res, 181(1): 1–8
|
44 |
Haffner M C, De Marzo A M, Meeker A K, Nelson W G, Yegnasubramanian S (2011). Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res, 17(12): 3858–3864
|
45 |
Helleday T, Eshtad S, Nik-Zainal S (2014). Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet, 15(9): 585–598
|
46 |
Hoeijmakers J H (2009). DNA damage, aging, and cancer. N Engl J Med, 361(15): 1475–1485
|
47 |
Kelman Z (1997). PCNA: structure, functions and interactions. Oncogene, 14(6): 629–640
|
48 |
Kinner A, Wu W, Staudt C, Iliakis G (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res, 36(17): 5678–5694
|
49 |
Kolas N K, Chapman J R, Nakada S, Ylanko J, Chahwan R, Sweeney F D, Panier S, Mendez M, Wildenhain J, Thomson T M, Pelletier L, Jackson S P, Durocher D (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318(5856): 1637–1640
|
50 |
Krishnan V, Chow M Z, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011). Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA, 108(30): 12325–12330
|
51 |
Kuo L J, Yang L X (2008). Gamma-H2AX- a novel biomarker for DNA double-strand breaks. In Vivo, 22(3): 305–309
|
52 |
Lavin M F (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol, 9(10): 759–769
|
53 |
Lee J H, Paull T T (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304(5667): 93–96
|
54 |
Lee J H, Paull T T (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308(5721): 551–554
|
55 |
Lee J H, Paull T T (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26(56): 7741–7748
|
56 |
Li X, Corsa C A, Pan P W, Wu L, Ferguson D, Yu X, Min J, Dou Y (2010). MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol, 30(22): 5335–5347
|
57 |
Lin M T, Beal M F (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113): 787–795
|
58 |
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy B K, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab, 16(6): 738–750
|
59 |
Liu B, Wang J, Chan K M, Tjia W M, Deng W, Guan X, Huang J D, Li K M, Chau P Y, Chen D J, Pei D, Pendas A M, Cadiñanos J, López-Otín C, Tse H F, Hutchison C, Chen J, Cao Y, Cheah K S, Tryggvason K, Zhou Z (2005). Genomic instability in laminopathy-based premature aging. Nat Med, 11(7): 780–785
|
60 |
Liu B, Wang Z, Ghosh S, Zhou Z (2013a). Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell, 12(2): 316–318
|
61 |
Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z (2013b). Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun, 4: 1868
|
62 |
Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006). DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci, 119(Pt 22): 4644–4649
|
63 |
Liu Y, Wang Y, Rusinol A E, Sinensky M S, Liu J, Shell S M, Zou Y (2008). Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J, 22(2): 603–611
|
64 |
Lombard D B, Chua K F, Mostoslavsky R, Franco S, Gostissa M, Alt F W (2005). DNA repair, genome stability, and aging. Cell, 120(4): 497–512
|
65 |
Longhese M P (2008). DNA damage response at functional and dysfunctional telomeres. Genes Dev, 22(2): 125–140
|
66 |
Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan A D, Venkitaraman A R (2013). A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One, 8(5): e61893
|
67 |
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131(5): 887–900
|
68 |
Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015). DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet, 6: 94
|
69 |
Manju K, Muralikrishna B, Parnaik V K (2006). Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci, 119(Pt 13): 2704–2714
|
70 |
Mathew C G (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene, 25(43): 5875–5884
|
71 |
Mattiroli F, Vissers J H, van Dijk W J, Ikpa P, Citterio E, Vermeulen W, Marteijn J A, Sixma T K (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150(6): 1182–1195
|
72 |
Mazouzi A, Velimezi G, Loizou J I (2014). DNA replication stress: causes, resolution and disease. Exp Cell Res, 329(1): 85–93
|
73 |
McCord R P, Nazario-Toole A, Zhang H, Chines P S, Zhan Y, Erdos M R, Collins F S, Dekker J, Cao K (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res, 23(2): 260–269
|
74 |
Merideth M A, Gordon L B, Clauss S, Sachdev V, Smith A C, Perry M B, Brewer C C, Zalewski C, Kim H J, Solomon B, Brooks B P, Gerber L H, Turner M L, Domingo D L, Hart T C, Graf J, Reynolds J C, Gropman A, Yanovski J A, Gerhard-Herman M, Collins F S, Nabel E G, Cannon R O 3rd, Gahl W A, Introne W J (2008). Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med, 358(6): 592–604
|
75 |
Mirkin E V, Mirkin S M (2007). Replication fork stalling at natural impediments. Microbiol Mol Biol Rev, 71(1): 13–35
|
76 |
Moir R D, Spann T P, Herrmann H, Goldman R D (2000). Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol, 149(6): 1179–1192
|
77 |
Mostoslavsky R, Chua K F, Lombard D B, Pang W W, Fischer M R, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy M M, Mills K D, Patel P, Hsu J T, Hong A L, Ford E, Cheng H L, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger M O, Hursting S, Barrett J C, Guarente L, Mulligan R, Demple B, Yancopoulos G D, Alt F W (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2): 315–329
|
78 |
Murphy M P (2009). How mitochondria produce reactive oxygen species. Biochem J, 417(1): 1–13
|
79 |
Musich P R, Zou Y (2009). Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany, NY), 1(1): 28–37
|
80 |
Musich P R, Zou Y (2011). DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem Soc Trans, 39(6): 1764–1769
|
81 |
Norbury C J, Zhivotovsky B (2004). DNA damage-induced apoptosis. Oncogene, 23(16): 2797–2808
|
82 |
Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park S K, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright S M, Mills K D, Bonni A, Yankner B A, Scully R, Prolla T A, Alt F W, Sinclair D A (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135(5): 907–918
|
83 |
Olcina M M, Foskolou I P, Anbalagan S, Senra J M, Pires I M, Jiang Y, Ryan A J, Hammond E M (2013). Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell, 52(5): 758–766
|
84 |
Oshima J, Martin G M, Hisama F M (1993). Werner Syndrome. GeneReviews(R), eds. Pagon R A, Adam M P, Ardinger H H, Wallace S E, Amemiya A, Bean L J H, Bird T D, Fong C T, Mefford H C, Smith R J H,
|
85 |
Osorio F G, Navarro C L, Cadiñanos J, López-Mejía I C, Quirós P M, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, Depetris D, de Carlos F, Cobo J, Andrés V, De Sandre-Giovannoli A, Freije J M, Lévy N, López-Otín C (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med, 3(106): 106ra107
|
86 |
Pagano G, Talamanca A A, Castello G, Cordero M D, d’Ischia M, Gadaleta M N, Pallardó F V, Petrović S, Tiano L, Zatterale A (2014). Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev, 2014: 541230
|
87 |
Panier S, Boulton S J (2014). Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 15(1): 7–18
|
88 |
Patel A G, Sarkaria J N, Kaufmann S H (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA, 108(8): 3406–3411
|
89 |
Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10(15): 886–895
|
90 |
Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009). Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol, 11(10): 1261–1267
|
91 |
Peinado J R, Quirós P M, Pulido M R, Mariño G, Martínez-Chantar M L, Vázquez-Martínez R, Freije J M P, López-Otín C, Malagón M M (2011). Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics, 10(11): M111.008094
|
92 |
Polo S E, Jackson S P (2011). Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev, 25(5): 409–433
|
93 |
Price B D, D’Andrea A D (2013). Chromatin remodeling at DNA double-strand breaks. Cell, 152(6): 1344–1354
|
94 |
Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen K J, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012). Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol, 19(4): 417–423
|
95 |
Redwood A B, Gonzalez-Suarez I, Gonzalo S (2011). Regulating the levels of key factors in cell cycle and DNA repair: new pathways revealed by lamins. Cell Cycle, 10(21): 3652–3657
|
96 |
Redwood A B, Perkins S M, Vanderwaal R P, Feng Z, Biehl K J, Gonzalez-Suarez I, Morgado-Palacin L, Shi W, Sage J, Roti-Roti J L, Stewart C L, Zhang J, Gonzalo S (2011). A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 10(15): 2549–2560
|
97 |
Richards S A, Muter J, Ritchie P, Lattanzi G, Hutchison C J (2011). The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet, 20(20): 3997–4004
|
98 |
Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, Osorio F G, Gonzalez-Gómez C, Megias D, Cámara C, López-Otín C, Enríquez J A, Luque-García J L, Andrés V (2013). Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteomics, 91: 466–477
|
99 |
Roos W P, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med, 12(9): 440–450
|
100 |
Sahin E, Depinho R A (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464(7288): 520–528
|
101 |
Scaffidi P, Misteli T (2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med, 11(4): 440–445
|
102 |
Schmitt E, Paquet C, Beauchemin M, Bertrand R (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B, 8(6): 377–397
|
103 |
Schreiber K H, Kennedy B K (2013). When lamins go bad: nuclear structure and disease. Cell, 152(6): 1365–1375
|
104 |
Shiloh Y, Ziv Y (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol, 14(4): 197–210
|
105 |
Shrivastav M, De Haro L P, Nickoloff J A (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18(1): 134–147
|
106 |
Shumaker D K, Dechat T, Kohlmaier A, Adam S A, Bozovsky M R, Erdos M R, Eriksson M, Goldman A E, Khuon S, Collins F S, Jenuwein T, Goldman R D (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA, 103(23): 8703–8708
|
107 |
Singh M, Hunt C R, Pandita R K, Kumar R, Yang C R, Horikoshi N, Bachoo R, Serag S, Story M D, Shay J W, Powell S N, Gupta A, Jeffery J, Pandita S, Chen B P, Deckbar D, Löbrich M, Yang Q, Khanna K K, Worman H J, Pandita T K (2013). Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol Cell Biol, 33(6): 1210–1222
|
108 |
Sirbu B M, Cortez D (2013). DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol, 5(8): a012724
|
109 |
Stewart G S, Wang B, Bignell C R, Taylor A M, Elledge S J (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 421(6926): 961–966
|
110 |
Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo P A (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res, 64(7): 2390–2396
|
111 |
Sun Y, Jiang X, Chen S, Fernandes N, Price B D (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA, 102(37): 13182–13187
|
112 |
Sun Y, Jiang X, Xu Y, Ayrapetov M K, Moreau L A, Whetstine J R, Price B D (2009). Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol, 11(11): 1376–1382
|
113 |
Tang H, Hilton B, Musich P R, Fang D Z, Zou Y (2012). Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome. Aging Cell, 11(2): 363–365
|
114 |
Tubbs A T, Sleckman B P (2014). ATM deficiency: revealing the pathways to cancer. Cell Cycle, 13(19): 2992
|
115 |
Varga R, Eriksson M, Erdos M R, Olive M, Harten I, Kolodgie F, Capell B C, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon L B, Virmani R, Wight T N, Nabel E G, Collins F S (2006). Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 103(9): 3250–3255
|
116 |
Verstraeten V L, Peckham L A, Olive M, Capell B C, Collins F S, Nabel E G, Young S G, Fong L G, Lammerding J (2011). Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci USA, 108(12): 4997–5002
|
117 |
Viteri G, Chung Y W, Stadtman E R (2010). Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev, 131(1): 2–8
|
118 |
Ward I M, Chen J (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 276(51): 47759–47762
|
119 |
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2015). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell
|
120 |
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2016). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell, 15(2): 279–290
|
121 |
Yang S H, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo M O, Young S G, Fong L G (2006). A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest, 116(8): 2115–2121
|
122 |
Yang S H, Qiao X, Fong L G, Young S G (2008). Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta, 1781(1-2): 36–39
|
123 |
Zhang H, Kieckhaefer J E, Cao K (2013). Mouse models of laminopathies. Aging Cell, 12(1): 2–10
|
124 |
Zhang H, Xiong Z M, Cao K (2014). Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc Natl Acad Sci USA, 111(22): E2261–E2270
|
125 |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla R D, Reddy P, Esteban C R, Tang F, Liu G H, Belmonte J C (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 348(6239): 1160–1163
|
126 |
Zhou B B, Elledge S J (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408(6811): 433–439
|
127 |
Zimmermann M, Lottersberger F, Buonomo S B, Sfeir A, de Lange T (2013). 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science, 339(6120): 700–704
|
/
〈 | 〉 |