REVIEW

Mechanisms of genome instability in Hutchinson-Gilford progeria

  • Haoyue Zhang ,
  • Kan Cao
Expand
  • Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA

Received date: 31 Aug 2016

Accepted date: 10 Nov 2016

Published date: 28 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.

OBJECTIVE: Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.

RESULTS AND CONCLUSION: In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.

Key words: HGPS; DDR; DSB repair

Cite this article

Haoyue Zhang , Kan Cao . Mechanisms of genome instability in Hutchinson-Gilford progeria[J]. Frontiers in Biology, 2017 , 12(1) : 49 -62 . DOI: 10.1007/s11515-016-1435-x

Compliance with ethics guidelines

Haoyue Zhang and Kan Cao declare declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Ayrapetov M K, Gursoy-Yuzugullu O, Xu C, Xu Y, Price B D (2014). DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci USA, 111(25): 9169–9174

DOI PMID

2
Bakkenist C J, Kastan M B (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922): 499–506

DOI PMID

3
Bird A W, Yu D Y, Pray-Grant M G, Qiu Q, Harmon K E, Megee P C, Grant P A, Smith M M, Christman M F (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature, 419(6905): 411–415

DOI PMID

4
Bothmer A, Robbiani D F, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig M C (2010). 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med, 207(4): 855–865

DOI PMID

5
Branzei D, Foiani M (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol, 17(6): 568–575

DOI PMID

6
Branzei D, Foiani M (2010). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol, 11(3): 208–219

DOI PMID

7
Brosh R M Jr, Bellani M, Liu Y, Seidman M M (2016). Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev: S1568-1637(16)30081-2

PMID

8
Bunting S F, Callén E, Wong N, Chen H T, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng C X, Finkel T, Nussenzweig M, Stark J M, Nussenzweig A (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 141(2): 243–254

DOI PMID

9
Burma S, Chen B P, Murphy M, Kurimasa A, Chen D J (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276(45): 42462–42467

DOI PMID

10
Cao K, Capell B C, Erdos M R, Djabali K, Collins F S (2007). A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA, 104(12): 4949–4954

DOI PMID

11
Cao K, Graziotto J J, Blair C D, Mazzulli J R, Erdos M R, Krainc D, Collins F S (2011). Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med, 3(89): 89ra58

DOI PMID

12
Capell B C, Collins F S (2006). Human laminopathies: nuclei gone genetically awry. Nat Rev Genet, 7(12): 940–952

DOI PMID

13
Capell B C, Erdos M R, Madigan J P, Fiordalisi J J, Varga R, Conneely K N, Gordon L B, Der C J, Cox A D, Collins F S (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 102(36): 12879–12884

DOI PMID

14
Capell B C, Olive M, Erdos M R, Cao K, Faddah D A, Tavarez U L, Conneely K N, Qu X, San H, Ganesh S K, Chen X, Avallone H, Kolodgie F D, Virmani R, Nabel E G, Collins F S (2008). A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA, 105(41): 15902–15907

DOI PMID

15
Chapman J R, Jackson S P (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep, 9(8): 795–801

DOI PMID

16
Chapman J R, Taylor M R, Boulton S J (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol Cell, 47(4): 497–510

DOI PMID

17
Chen J H, Hales C N, Ozanne S E (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res, 35(22): 7417–7428

DOI PMID

18
Childs B G, Baker D J, Kirkland J L, Campisi J, van Deursen J M (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep, 15(11): 1139–1153

DOI PMID

19
Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204

DOI PMID

20
Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214

DOI PMID

21
d’Adda di Fagagna F (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 8(7): 512–522

DOI PMID

22
D’Andrea A D, Grompe M (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer, 3(1): 23–34

DOI PMID

23
Das A, Grotsky D A, Neumann M A, Kreienkamp R, Gonzalez-Suarez I, Redwood A B, Kennedy B K, Stewart C L, Gonzalo S (2013). Lamin A Dexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus, 4(5): 410–419

DOI PMID

24
De Bont R, van Larebeke N (2004). Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19(3): 169–185

DOI PMID

25
Dobbin M M, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao P C, Qiu Y, Zhao Y, Tsai L H (2013). SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci, 16(8): 1008–1015

DOI PMID

26
Eriksson M, Brown W T, Gordon L B, Glynn M W, Singer J, Scott L, Erdos M R, Robbins C M, Moses T Y, Berglund P, Dutra A, Pak E, Durkin S, Csoka A B, Boehnke M, Glover T W, Collins F S (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937): 293–298

DOI PMID

27
Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young J T, Tkáč J, Cook M A, Rosebrock A P, Munro M, Canny M D, Xu D, Durocher D (2013). A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell, 49(5): 872–883

DOI PMID

28
Flynn R L, Zou L (2011). ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci, 36(3): 133–140

DOI PMID

29
Fradet-Turcotte A, Canny M D, Escribano-Díaz C, Orthwein A, Leung C C, Huang H, Landry M C, Kitevski-LeBlanc J, Noordermeer S M, Sicheri F, Durocher D (2013). 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 499(7456): 50–54

DOI PMID

30
Friedberg E C, McDaniel L D, Schultz R A (2004). The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev, 14(1): 5–10

DOI PMID

31
Garinis G A, van der Horst G T, Vijg J, Hoeijmakers J H (2008). DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol, 10(11): 1241–1247

DOI PMID

32
Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z (2015). Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Reports, 13(7): 1396–1406

DOI PMID

33
Gibbs-Seymour I, Markiewicz E, Bekker-Jensen S, Mailand N, Hutchison C J (2015). Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell, 14(2): 162–169

DOI PMID

34
Goldman R D, Shumaker D K, Erdos M R, Eriksson M, Goldman A E, Gordon L B, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins F S (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 101(24): 8963–8968

DOI PMID

35
Gonzalez-Suarez I, Redwood A B, Gonzalo S (2009). Loss of A-type lamins and genomic instability. Cell Cycle, 8(23): 3860–3865

DOI PMID

36
Gonzalez-Suarez I, Redwood A B, Grotsky D A, Neumann M A, Cheng E H, Stewart C L, Dusso A, Gonzalo S (2011). A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J, 30(16): 3383–3396

DOI PMID

37
Gonzalo S (2014). DNA damage and lamins. Adv Exp Med Biol, 773: 377–399

DOI PMID

38
Gonzalo S, Kreienkamp R (2015). DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol, 34: 75–83

DOI PMID

39
Gonzalo S, Kreienkamp R, Askjaer P (2016). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Res Rev: S1568-1637(16)30134-9

PMID

40
Gordon L B, Kleinman M E, Miller D T, Neuberg D S, Giobbie-Hurder A, Gerhard-Herman M, Smoot L B, Gordon C M, Cleveland R, Snyder B D, Fligor B, Bishop W R, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich N J, Nazarian A, Liang M G, Huh S Y, Schwartzman A, Kieran M W (2012). Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 109(41): 16666–16671

DOI PMID

41
Gordon L B, Massaro J, D’Agostino R B Sr, Campbell S E, Brazier J, Brown W T, Kleinman M E, Kieran M W, and the Progeria Clinical Trials Collaborative (2014). Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation, 130(1): 27–34

DOI PMID

42
Gordon L B, McCarten K M, Giobbie-Hurder A, Machan J T, Campbell S E, Berns S D, Kieran M W (2007). Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics, 120(4): 824–833

DOI PMID

43
Gupta A, Hunt C R, Chakraborty S, Pandita R K, Yordy J, Ramnarain D B, Horikoshi N, Pandita T K (2014). Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res, 181(1): 1–8

DOI PMID

44
Haffner M C, De Marzo A M, Meeker A K, Nelson W G, Yegnasubramanian S (2011). Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res, 17(12): 3858–3864

DOI PMID

45
Helleday T, Eshtad S, Nik-Zainal S (2014). Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet, 15(9): 585–598

DOI PMID

46
Hoeijmakers J H (2009). DNA damage, aging, and cancer. N Engl J Med, 361(15): 1475–1485

DOI PMID

47
Kelman Z (1997). PCNA: structure, functions and interactions. Oncogene, 14(6): 629–640

DOI PMID

48
Kinner A, Wu W, Staudt C, Iliakis G (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res, 36(17): 5678–5694

DOI PMID

49
Kolas N K, Chapman J R, Nakada S, Ylanko J, Chahwan R, Sweeney F D, Panier S, Mendez M, Wildenhain J, Thomson T M, Pelletier L, Jackson S P, Durocher D (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318(5856): 1637–1640

DOI PMID

50
Krishnan V, Chow M Z, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011). Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA, 108(30): 12325–12330

DOI PMID

51
Kuo L J, Yang L X (2008). Gamma-H2AX- a novel biomarker for DNA double-strand breaks. In Vivo, 22(3): 305–309

PMID

52
Lavin M F (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol, 9(10): 759–769

DOI PMID

53
Lee J H, Paull T T (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304(5667): 93–96

DOI PMID

54
Lee J H, Paull T T (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308(5721): 551–554

DOI PMID

55
Lee J H, Paull T T (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26(56): 7741–7748

DOI PMID

56
Li X, Corsa C A, Pan P W, Wu L, Ferguson D, Yu X, Min J, Dou Y (2010). MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol, 30(22): 5335–5347

DOI PMID

57
Lin M T, Beal M F (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113): 787–795

DOI PMID

58
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy B K, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab, 16(6): 738–750

DOI PMID

59
Liu B, Wang J, Chan K M, Tjia W M, Deng W, Guan X, Huang J D, Li K M, Chau P Y, Chen D J, Pei D, Pendas A M, Cadiñanos J, López-Otín C, Tse H F, Hutchison C, Chen J, Cao Y, Cheah K S, Tryggvason K, Zhou Z (2005). Genomic instability in laminopathy-based premature aging. Nat Med, 11(7): 780–785

DOI PMID

60
Liu B, Wang Z, Ghosh S, Zhou Z (2013a). Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell, 12(2): 316–318

DOI PMID

61
Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z (2013b). Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun, 4: 1868

DOI PMID

62
Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006). DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci, 119(Pt 22): 4644–4649

DOI PMID

63
Liu Y, Wang Y, Rusinol A E, Sinensky M S, Liu J, Shell S M, Zou Y (2008). Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J, 22(2): 603–611

DOI PMID

64
Lombard D B, Chua K F, Mostoslavsky R, Franco S, Gostissa M, Alt F W (2005). DNA repair, genome stability, and aging. Cell, 120(4): 497–512

DOI PMID

65
Longhese M P (2008). DNA damage response at functional and dysfunctional telomeres. Genes Dev, 22(2): 125–140

DOI PMID

66
Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan A D, Venkitaraman A R (2013). A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One, 8(5): e61893

DOI PMID

67
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131(5): 887–900

DOI PMID

68
Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015). DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet, 6: 94

DOI PMID

69
Manju K, Muralikrishna B, Parnaik V K (2006). Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci, 119(Pt 13): 2704–2714

DOI PMID

70
Mathew C G (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene, 25(43): 5875–5884

DOI PMID

71
Mattiroli F, Vissers J H, van Dijk W J, Ikpa P, Citterio E, Vermeulen W, Marteijn J A, Sixma T K (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150(6): 1182–1195

DOI PMID

72
Mazouzi A, Velimezi G, Loizou J I (2014). DNA replication stress: causes, resolution and disease. Exp Cell Res, 329(1): 85–93

DOI PMID

73
McCord R P, Nazario-Toole A, Zhang H, Chines P S, Zhan Y, Erdos M R, Collins F S, Dekker J, Cao K (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res, 23(2): 260–269

DOI PMID

74
Merideth M A, Gordon L B, Clauss S, Sachdev V, Smith A C, Perry M B, Brewer C C, Zalewski C, Kim H J, Solomon B, Brooks B P, Gerber L H, Turner M L, Domingo D L, Hart T C, Graf J, Reynolds J C, Gropman A, Yanovski J A, Gerhard-Herman M, Collins F S, Nabel E G, Cannon R O 3rd, Gahl W A, Introne W J (2008). Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med, 358(6): 592–604

DOI PMID

75
Mirkin E V, Mirkin S M (2007). Replication fork stalling at natural impediments. Microbiol Mol Biol Rev, 71(1): 13–35

DOI PMID

76
Moir R D, Spann T P, Herrmann H, Goldman R D (2000). Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol, 149(6): 1179–1192

DOI PMID

77
Mostoslavsky R, Chua K F, Lombard D B, Pang W W, Fischer M R, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy M M, Mills K D, Patel P, Hsu J T, Hong A L, Ford E, Cheng H L, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger M O, Hursting S, Barrett J C, Guarente L, Mulligan R, Demple B, Yancopoulos G D, Alt F W (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2): 315–329

DOI PMID

78
Murphy M P (2009). How mitochondria produce reactive oxygen species. Biochem J, 417(1): 1–13

DOI PMID

79
Musich P R, Zou Y (2009). Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany, NY), 1(1): 28–37

DOI PMID

80
Musich P R, Zou Y (2011). DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem Soc Trans, 39(6): 1764–1769

DOI PMID

81
Norbury C J, Zhivotovsky B (2004). DNA damage-induced apoptosis. Oncogene, 23(16): 2797–2808

DOI PMID

82
Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park S K, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright S M, Mills K D, Bonni A, Yankner B A, Scully R, Prolla T A, Alt F W, Sinclair D A (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135(5): 907–918

DOI PMID

83
Olcina M M, Foskolou I P, Anbalagan S, Senra J M, Pires I M, Jiang Y, Ryan A J, Hammond E M (2013). Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell, 52(5): 758–766

DOI PMID

84
Oshima J, Martin G M, Hisama F M (1993). Werner Syndrome. GeneReviews(R), eds. Pagon R A, Adam M P, Ardinger H H, Wallace S E, Amemiya A, Bean L J H, Bird T D, Fong C T, Mefford H C, Smith R J H, . (University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved. Seattle (WA)).

85
Osorio F G, Navarro C L, Cadiñanos J, López-Mejía I C, Quirós P M, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, Depetris D, de Carlos F, Cobo J, Andrés V, De Sandre-Giovannoli A, Freije J M, Lévy N, López-Otín C (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med, 3(106): 106ra107

DOI PMID

86
Pagano G, Talamanca A A, Castello G, Cordero M D, d’Ischia M, Gadaleta M N, Pallardó F V, Petrović S, Tiano L, Zatterale A (2014). Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev, 2014: 541230

DOI PMID

87
Panier S, Boulton S J (2014). Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 15(1): 7–18

DOI PMID

88
Patel A G, Sarkaria J N, Kaufmann S H (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA, 108(8): 3406–3411

DOI PMID

89
Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10(15): 886–895

DOI PMID

90
Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009). Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol, 11(10): 1261–1267

DOI PMID

91
Peinado J R, Quirós P M, Pulido M R, Mariño G, Martínez-Chantar M L, Vázquez-Martínez R, Freije J M P, López-Otín C, Malagón M M (2011). Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics, 10(11): M111.008094

92
Polo S E, Jackson S P (2011). Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev, 25(5): 409–433

DOI PMID

93
Price B D, D’Andrea A D (2013). Chromatin remodeling at DNA double-strand breaks. Cell, 152(6): 1344–1354

DOI PMID

94
Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen K J, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012). Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol, 19(4): 417–423

DOI PMID

95
Redwood A B, Gonzalez-Suarez I, Gonzalo S (2011). Regulating the levels of key factors in cell cycle and DNA repair: new pathways revealed by lamins. Cell Cycle, 10(21): 3652–3657

DOI PMID

96
Redwood A B, Perkins S M, Vanderwaal R P, Feng Z, Biehl K J, Gonzalez-Suarez I, Morgado-Palacin L, Shi W, Sage J, Roti-Roti J L, Stewart C L, Zhang J, Gonzalo S (2011). A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 10(15): 2549–2560

DOI PMID

97
Richards S A, Muter J, Ritchie P, Lattanzi G, Hutchison C J (2011). The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet, 20(20): 3997–4004

DOI PMID

98
Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, Osorio F G, Gonzalez-Gómez C, Megias D, Cámara C, López-Otín C, Enríquez J A, Luque-García J L, Andrés V (2013). Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteomics, 91: 466–477

DOI PMID

99
Roos W P, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med, 12(9): 440–450

DOI PMID

100
Sahin E, Depinho R A (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464(7288): 520–528

DOI PMID

101
Scaffidi P, Misteli T (2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med, 11(4): 440–445

DOI PMID

102
Schmitt E, Paquet C, Beauchemin M, Bertrand R (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B, 8(6): 377–397

DOI PMID

103
Schreiber K H, Kennedy B K (2013). When lamins go bad: nuclear structure and disease. Cell, 152(6): 1365–1375

DOI PMID

104
Shiloh Y, Ziv Y (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol, 14(4): 197–210

DOI

105
Shrivastav M, De Haro L P, Nickoloff J A (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18(1): 134–147

DOI PMID

106
Shumaker D K, Dechat T, Kohlmaier A, Adam S A, Bozovsky M R, Erdos M R, Eriksson M, Goldman A E, Khuon S, Collins F S, Jenuwein T, Goldman R D (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA, 103(23): 8703–8708

DOI PMID

107
Singh M, Hunt C R, Pandita R K, Kumar R, Yang C R, Horikoshi N, Bachoo R, Serag S, Story M D, Shay J W, Powell S N, Gupta A, Jeffery J, Pandita S, Chen B P, Deckbar D, Löbrich M, Yang Q, Khanna K K, Worman H J, Pandita T K (2013). Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol Cell Biol, 33(6): 1210–1222

DOI PMID

108
Sirbu B M, Cortez D (2013). DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol, 5(8): a012724

DOI PMID

109
Stewart G S, Wang B, Bignell C R, Taylor A M, Elledge S J (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 421(6926): 961–966

DOI PMID

110
Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo P A (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res, 64(7): 2390–2396

DOI PMID

111
Sun Y, Jiang X, Chen S, Fernandes N, Price B D (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA, 102(37): 13182–13187

DOI PMID

112
Sun Y, Jiang X, Xu Y, Ayrapetov M K, Moreau L A, Whetstine J R, Price B D (2009). Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol, 11(11): 1376–1382

DOI PMID

113
Tang H, Hilton B, Musich P R, Fang D Z, Zou Y (2012). Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome. Aging Cell, 11(2): 363–365

DOI PMID

114
Tubbs A T, Sleckman B P (2014). ATM deficiency: revealing the pathways to cancer. Cell Cycle, 13(19): 2992

DOI PMID

115
Varga R, Eriksson M, Erdos M R, Olive M, Harten I, Kolodgie F, Capell B C, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon L B, Virmani R, Wight T N, Nabel E G, Collins F S (2006). Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 103(9): 3250–3255

DOI PMID

116
Verstraeten V L, Peckham L A, Olive M, Capell B C, Collins F S, Nabel E G, Young S G, Fong L G, Lammerding J (2011). Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci USA, 108(12): 4997–5002

DOI PMID

117
Viteri G, Chung Y W, Stadtman E R (2010). Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev, 131(1): 2–8

DOI PMID

118
Ward I M, Chen J (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 276(51): 47759–47762

PMID

119
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2015). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell

PMID

120
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2016). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell, 15(2): 279–290

DOI PMID

121
Yang S H, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo M O, Young S G, Fong L G (2006). A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest, 116(8): 2115–2121

DOI PMID

122
Yang S H, Qiao X, Fong L G, Young S G (2008). Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta, 1781(1-2): 36–39

DOI PMID

123
Zhang H, Kieckhaefer J E, Cao K (2013). Mouse models of laminopathies. Aging Cell, 12(1): 2–10

DOI PMID

124
Zhang H, Xiong Z M, Cao K (2014). Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc Natl Acad Sci USA, 111(22): E2261–E2270

DOI PMID

125
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla R D, Reddy P, Esteban C R, Tang F, Liu G H, Belmonte J C (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 348(6239): 1160–1163

DOI PMID

126
Zhou B B, Elledge S J (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408(6811): 433–439

DOI PMID

127
Zimmermann M, Lottersberger F, Buonomo S B, Sfeir A, de Lange T (2013). 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science, 339(6120): 700–704

DOI PMID

Outlines

/