Mechanisms of genome instability in Hutchinson-Gilford progeria
Haoyue Zhang, Kan Cao
Mechanisms of genome instability in Hutchinson-Gilford progeria
BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.
OBJECTIVE: Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.
RESULTS AND CONCLUSION: In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.
HGPS / DDR / DSB repair
[1] |
Ayrapetov M K, Gursoy-Yuzugullu O, Xu C, Xu Y, Price B D (2014). DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci USA, 111(25): 9169–9174
CrossRef
Pubmed
Google scholar
|
[2] |
Bakkenist C J, Kastan M B (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922): 499–506
CrossRef
Pubmed
Google scholar
|
[3] |
Bird A W, Yu D Y, Pray-Grant M G, Qiu Q, Harmon K E, Megee P C, Grant P A, Smith M M, Christman M F (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature, 419(6905): 411–415
CrossRef
Pubmed
Google scholar
|
[4] |
Bothmer A, Robbiani D F, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig M C (2010). 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med, 207(4): 855–865
CrossRef
Pubmed
Google scholar
|
[5] |
Branzei D, Foiani M (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol, 17(6): 568–575
CrossRef
Pubmed
Google scholar
|
[6] |
Branzei D, Foiani M (2010). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol, 11(3): 208–219
CrossRef
Pubmed
Google scholar
|
[7] |
Brosh R M Jr, Bellani M, Liu Y, Seidman M M (2016). Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev: S1568-1637(16)30081-2
Pubmed
|
[8] |
Bunting S F, Callén E, Wong N, Chen H T, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng C X, Finkel T, Nussenzweig M, Stark J M, Nussenzweig A (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 141(2): 243–254
CrossRef
Pubmed
Google scholar
|
[9] |
Burma S, Chen B P, Murphy M, Kurimasa A, Chen D J (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276(45): 42462–42467
CrossRef
Pubmed
Google scholar
|
[10] |
Cao K, Capell B C, Erdos M R, Djabali K, Collins F S (2007). A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA, 104(12): 4949–4954
CrossRef
Pubmed
Google scholar
|
[11] |
Cao K, Graziotto J J, Blair C D, Mazzulli J R, Erdos M R, Krainc D, Collins F S (2011). Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med, 3(89): 89ra58
CrossRef
Pubmed
Google scholar
|
[12] |
Capell B C, Collins F S (2006). Human laminopathies: nuclei gone genetically awry. Nat Rev Genet, 7(12): 940–952
CrossRef
Pubmed
Google scholar
|
[13] |
Capell B C, Erdos M R, Madigan J P, Fiordalisi J J, Varga R, Conneely K N, Gordon L B, Der C J, Cox A D, Collins F S (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 102(36): 12879–12884
CrossRef
Pubmed
Google scholar
|
[14] |
Capell B C, Olive M, Erdos M R, Cao K, Faddah D A, Tavarez U L, Conneely K N, Qu X, San H, Ganesh S K, Chen X, Avallone H, Kolodgie F D, Virmani R, Nabel E G, Collins F S (2008). A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA, 105(41): 15902–15907
CrossRef
Pubmed
Google scholar
|
[15] |
Chapman J R, Jackson S P (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep, 9(8): 795–801
CrossRef
Pubmed
Google scholar
|
[16] |
Chapman J R, Taylor M R, Boulton S J (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol Cell, 47(4): 497–510
CrossRef
Pubmed
Google scholar
|
[17] |
Chen J H, Hales C N, Ozanne S E (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res, 35(22): 7417–7428
CrossRef
Pubmed
Google scholar
|
[18] |
Childs B G, Baker D J, Kirkland J L, Campisi J, van Deursen J M (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep, 15(11): 1139–1153
CrossRef
Pubmed
Google scholar
|
[19] |
Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204
CrossRef
Pubmed
Google scholar
|
[20] |
Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214
CrossRef
Pubmed
Google scholar
|
[21] |
d’Adda di Fagagna F (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 8(7): 512–522
CrossRef
Pubmed
Google scholar
|
[22] |
D’Andrea A D, Grompe M (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer, 3(1): 23–34
CrossRef
Pubmed
Google scholar
|
[23] |
Das A, Grotsky D A, Neumann M A, Kreienkamp R, Gonzalez-Suarez I, Redwood A B, Kennedy B K, Stewart C L, Gonzalo S (2013). Lamin A Dexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus, 4(5): 410–419
CrossRef
Pubmed
Google scholar
|
[24] |
De Bont R, van Larebeke N (2004). Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19(3): 169–185
CrossRef
Pubmed
Google scholar
|
[25] |
Dobbin M M, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao P C, Qiu Y, Zhao Y, Tsai L H (2013). SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci, 16(8): 1008–1015
CrossRef
Pubmed
Google scholar
|
[26] |
Eriksson M, Brown W T, Gordon L B, Glynn M W, Singer J, Scott L, Erdos M R, Robbins C M, Moses T Y, Berglund P, Dutra A, Pak E, Durkin S, Csoka A B, Boehnke M, Glover T W, Collins F S (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937): 293–298
CrossRef
Pubmed
Google scholar
|
[27] |
Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young J T, Tkáč J, Cook M A, Rosebrock A P, Munro M, Canny M D, Xu D, Durocher D (2013). A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell, 49(5): 872–883
CrossRef
Pubmed
Google scholar
|
[28] |
Flynn R L, Zou L (2011). ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci, 36(3): 133–140
CrossRef
Pubmed
Google scholar
|
[29] |
Fradet-Turcotte A, Canny M D, Escribano-Díaz C, Orthwein A, Leung C C, Huang H, Landry M C, Kitevski-LeBlanc J, Noordermeer S M, Sicheri F, Durocher D (2013). 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 499(7456): 50–54
CrossRef
Pubmed
Google scholar
|
[30] |
Friedberg E C, McDaniel L D, Schultz R A (2004). The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev, 14(1): 5–10
CrossRef
Pubmed
Google scholar
|
[31] |
Garinis G A, van der Horst G T, Vijg J, Hoeijmakers J H (2008). DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol, 10(11): 1241–1247
CrossRef
Pubmed
Google scholar
|
[32] |
Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z (2015). Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Reports, 13(7): 1396–1406
CrossRef
Pubmed
Google scholar
|
[33] |
Gibbs-Seymour I, Markiewicz E, Bekker-Jensen S, Mailand N, Hutchison C J (2015). Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell, 14(2): 162–169
CrossRef
Pubmed
Google scholar
|
[34] |
Goldman R D, Shumaker D K, Erdos M R, Eriksson M, Goldman A E, Gordon L B, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins F S (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 101(24): 8963–8968
CrossRef
Pubmed
Google scholar
|
[35] |
Gonzalez-Suarez I, Redwood A B, Gonzalo S (2009). Loss of A-type lamins and genomic instability. Cell Cycle, 8(23): 3860–3865
CrossRef
Pubmed
Google scholar
|
[36] |
Gonzalez-Suarez I, Redwood A B, Grotsky D A, Neumann M A, Cheng E H, Stewart C L, Dusso A, Gonzalo S (2011). A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J, 30(16): 3383–3396
CrossRef
Pubmed
Google scholar
|
[37] |
Gonzalo S (2014). DNA damage and lamins. Adv Exp Med Biol, 773: 377–399
CrossRef
Pubmed
Google scholar
|
[38] |
Gonzalo S, Kreienkamp R (2015). DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol, 34: 75–83
CrossRef
Pubmed
Google scholar
|
[39] |
Gonzalo S, Kreienkamp R, Askjaer P (2016). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Res Rev: S1568-1637(16)30134-9
Pubmed
|
[40] |
Gordon L B, Kleinman M E, Miller D T, Neuberg D S, Giobbie-Hurder A, Gerhard-Herman M, Smoot L B, Gordon C M, Cleveland R, Snyder B D, Fligor B, Bishop W R, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich N J, Nazarian A, Liang M G, Huh S Y, Schwartzman A, Kieran M W (2012). Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 109(41): 16666–16671
CrossRef
Pubmed
Google scholar
|
[41] |
Gordon L B, Massaro J, D’Agostino R B Sr, Campbell S E, Brazier J, Brown W T, Kleinman M E, Kieran M W, and the Progeria Clinical Trials Collaborative (2014). Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation, 130(1): 27–34
CrossRef
Pubmed
Google scholar
|
[42] |
Gordon L B, McCarten K M, Giobbie-Hurder A, Machan J T, Campbell S E, Berns S D, Kieran M W (2007). Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics, 120(4): 824–833
CrossRef
Pubmed
Google scholar
|
[43] |
Gupta A, Hunt C R, Chakraborty S, Pandita R K, Yordy J, Ramnarain D B, Horikoshi N, Pandita T K (2014). Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res, 181(1): 1–8
CrossRef
Pubmed
Google scholar
|
[44] |
Haffner M C, De Marzo A M, Meeker A K, Nelson W G, Yegnasubramanian S (2011). Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res, 17(12): 3858–3864
CrossRef
Pubmed
Google scholar
|
[45] |
Helleday T, Eshtad S, Nik-Zainal S (2014). Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet, 15(9): 585–598
CrossRef
Pubmed
Google scholar
|
[46] |
Hoeijmakers J H (2009). DNA damage, aging, and cancer. N Engl J Med, 361(15): 1475–1485
CrossRef
Pubmed
Google scholar
|
[47] |
Kelman Z (1997). PCNA: structure, functions and interactions. Oncogene, 14(6): 629–640
CrossRef
Pubmed
Google scholar
|
[48] |
Kinner A, Wu W, Staudt C, Iliakis G (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res, 36(17): 5678–5694
CrossRef
Pubmed
Google scholar
|
[49] |
Kolas N K, Chapman J R, Nakada S, Ylanko J, Chahwan R, Sweeney F D, Panier S, Mendez M, Wildenhain J, Thomson T M, Pelletier L, Jackson S P, Durocher D (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318(5856): 1637–1640
CrossRef
Pubmed
Google scholar
|
[50] |
Krishnan V, Chow M Z, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011). Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA, 108(30): 12325–12330
CrossRef
Pubmed
Google scholar
|
[51] |
Kuo L J, Yang L X (2008). Gamma-H2AX- a novel biomarker for DNA double-strand breaks. In Vivo, 22(3): 305–309
Pubmed
|
[52] |
Lavin M F (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol, 9(10): 759–769
CrossRef
Pubmed
Google scholar
|
[53] |
Lee J H, Paull T T (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304(5667): 93–96
CrossRef
Pubmed
Google scholar
|
[54] |
Lee J H, Paull T T (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308(5721): 551–554
CrossRef
Pubmed
Google scholar
|
[55] |
Lee J H, Paull T T (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26(56): 7741–7748
CrossRef
Pubmed
Google scholar
|
[56] |
Li X, Corsa C A, Pan P W, Wu L, Ferguson D, Yu X, Min J, Dou Y (2010). MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol, 30(22): 5335–5347
CrossRef
Pubmed
Google scholar
|
[57] |
Lin M T, Beal M F (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113): 787–795
CrossRef
Pubmed
Google scholar
|
[58] |
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy B K, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab, 16(6): 738–750
CrossRef
Pubmed
Google scholar
|
[59] |
Liu B, Wang J, Chan K M, Tjia W M, Deng W, Guan X, Huang J D, Li K M, Chau P Y, Chen D J, Pei D, Pendas A M, Cadiñanos J, López-Otín C, Tse H F, Hutchison C, Chen J, Cao Y, Cheah K S, Tryggvason K, Zhou Z (2005). Genomic instability in laminopathy-based premature aging. Nat Med, 11(7): 780–785
CrossRef
Pubmed
Google scholar
|
[60] |
Liu B, Wang Z, Ghosh S, Zhou Z (2013a). Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell, 12(2): 316–318
CrossRef
Pubmed
Google scholar
|
[61] |
Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z (2013b). Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun, 4: 1868
CrossRef
Pubmed
Google scholar
|
[62] |
Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006). DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci, 119(Pt 22): 4644–4649
CrossRef
Pubmed
Google scholar
|
[63] |
Liu Y, Wang Y, Rusinol A E, Sinensky M S, Liu J, Shell S M, Zou Y (2008). Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J, 22(2): 603–611
CrossRef
Pubmed
Google scholar
|
[64] |
Lombard D B, Chua K F, Mostoslavsky R, Franco S, Gostissa M, Alt F W (2005). DNA repair, genome stability, and aging. Cell, 120(4): 497–512
CrossRef
Pubmed
Google scholar
|
[65] |
Longhese M P (2008). DNA damage response at functional and dysfunctional telomeres. Genes Dev, 22(2): 125–140
CrossRef
Pubmed
Google scholar
|
[66] |
Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan A D, Venkitaraman A R (2013). A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One, 8(5): e61893
CrossRef
Pubmed
Google scholar
|
[67] |
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131(5): 887–900
CrossRef
Pubmed
Google scholar
|
[68] |
Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015). DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet, 6: 94
CrossRef
Pubmed
Google scholar
|
[69] |
Manju K, Muralikrishna B, Parnaik V K (2006). Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci, 119(Pt 13): 2704–2714
CrossRef
Pubmed
Google scholar
|
[70] |
Mathew C G (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene, 25(43): 5875–5884
CrossRef
Pubmed
Google scholar
|
[71] |
Mattiroli F, Vissers J H, van Dijk W J, Ikpa P, Citterio E, Vermeulen W, Marteijn J A, Sixma T K (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150(6): 1182–1195
CrossRef
Pubmed
Google scholar
|
[72] |
Mazouzi A, Velimezi G, Loizou J I (2014). DNA replication stress: causes, resolution and disease. Exp Cell Res, 329(1): 85–93
CrossRef
Pubmed
Google scholar
|
[73] |
McCord R P, Nazario-Toole A, Zhang H, Chines P S, Zhan Y, Erdos M R, Collins F S, Dekker J, Cao K (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res, 23(2): 260–269
CrossRef
Pubmed
Google scholar
|
[74] |
Merideth M A, Gordon L B, Clauss S, Sachdev V, Smith A C, Perry M B, Brewer C C, Zalewski C, Kim H J, Solomon B, Brooks B P, Gerber L H, Turner M L, Domingo D L, Hart T C, Graf J, Reynolds J C, Gropman A, Yanovski J A, Gerhard-Herman M, Collins F S, Nabel E G, Cannon R O 3rd, Gahl W A, Introne W J (2008). Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med, 358(6): 592–604
CrossRef
Pubmed
Google scholar
|
[75] |
Mirkin E V, Mirkin S M (2007). Replication fork stalling at natural impediments. Microbiol Mol Biol Rev, 71(1): 13–35
CrossRef
Pubmed
Google scholar
|
[76] |
Moir R D, Spann T P, Herrmann H, Goldman R D (2000). Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol, 149(6): 1179–1192
CrossRef
Pubmed
Google scholar
|
[77] |
Mostoslavsky R, Chua K F, Lombard D B, Pang W W, Fischer M R, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy M M, Mills K D, Patel P, Hsu J T, Hong A L, Ford E, Cheng H L, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger M O, Hursting S, Barrett J C, Guarente L, Mulligan R, Demple B, Yancopoulos G D, Alt F W (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2): 315–329
CrossRef
Pubmed
Google scholar
|
[78] |
Murphy M P (2009). How mitochondria produce reactive oxygen species. Biochem J, 417(1): 1–13
CrossRef
Pubmed
Google scholar
|
[79] |
Musich P R, Zou Y (2009). Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany, NY), 1(1): 28–37
CrossRef
Pubmed
Google scholar
|
[80] |
Musich P R, Zou Y (2011). DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem Soc Trans, 39(6): 1764–1769
CrossRef
Pubmed
Google scholar
|
[81] |
Norbury C J, Zhivotovsky B (2004). DNA damage-induced apoptosis. Oncogene, 23(16): 2797–2808
CrossRef
Pubmed
Google scholar
|
[82] |
Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park S K, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright S M, Mills K D, Bonni A, Yankner B A, Scully R, Prolla T A, Alt F W, Sinclair D A (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135(5): 907–918
CrossRef
Pubmed
Google scholar
|
[83] |
Olcina M M, Foskolou I P, Anbalagan S, Senra J M, Pires I M, Jiang Y, Ryan A J, Hammond E M (2013). Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell, 52(5): 758–766
CrossRef
Pubmed
Google scholar
|
[84] |
Oshima J, Martin G M, Hisama F M (1993). Werner Syndrome. GeneReviews(R), eds. Pagon R A, Adam M P, Ardinger H H, Wallace S E, Amemiya A, Bean L J H, Bird T D, Fong C T, Mefford H C, Smith R J H,
|
[85] |
Osorio F G, Navarro C L, Cadiñanos J, López-Mejía I C, Quirós P M, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, Depetris D, de Carlos F, Cobo J, Andrés V, De Sandre-Giovannoli A, Freije J M, Lévy N, López-Otín C (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med, 3(106): 106ra107
CrossRef
Pubmed
Google scholar
|
[86] |
Pagano G, Talamanca A A, Castello G, Cordero M D, d’Ischia M, Gadaleta M N, Pallardó F V, Petrović S, Tiano L, Zatterale A (2014). Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev, 2014: 541230
CrossRef
Pubmed
Google scholar
|
[87] |
Panier S, Boulton S J (2014). Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol, 15(1): 7–18
CrossRef
Pubmed
Google scholar
|
[88] |
Patel A G, Sarkaria J N, Kaufmann S H (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA, 108(8): 3406–3411
CrossRef
Pubmed
Google scholar
|
[89] |
Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10(15): 886–895
CrossRef
Pubmed
Google scholar
|
[90] |
Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009). Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol, 11(10): 1261–1267
CrossRef
Pubmed
Google scholar
|
[91] |
Peinado J R, Quirós P M, Pulido M R, Mariño G, Martínez-Chantar M L, Vázquez-Martínez R, Freije J M P, López-Otín C, Malagón M M (2011). Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics, 10(11): M111.008094
|
[92] |
Polo S E, Jackson S P (2011). Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev, 25(5): 409–433
CrossRef
Pubmed
Google scholar
|
[93] |
Price B D, D’Andrea A D (2013). Chromatin remodeling at DNA double-strand breaks. Cell, 152(6): 1344–1354
CrossRef
Pubmed
Google scholar
|
[94] |
Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen K J, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012). Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol, 19(4): 417–423
CrossRef
Pubmed
Google scholar
|
[95] |
Redwood A B, Gonzalez-Suarez I, Gonzalo S (2011). Regulating the levels of key factors in cell cycle and DNA repair: new pathways revealed by lamins. Cell Cycle, 10(21): 3652–3657
CrossRef
Pubmed
Google scholar
|
[96] |
Redwood A B, Perkins S M, Vanderwaal R P, Feng Z, Biehl K J, Gonzalez-Suarez I, Morgado-Palacin L, Shi W, Sage J, Roti-Roti J L, Stewart C L, Zhang J, Gonzalo S (2011). A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 10(15): 2549–2560
CrossRef
Pubmed
Google scholar
|
[97] |
Richards S A, Muter J, Ritchie P, Lattanzi G, Hutchison C J (2011). The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet, 20(20): 3997–4004
CrossRef
Pubmed
Google scholar
|
[98] |
Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, Osorio F G, Gonzalez-Gómez C, Megias D, Cámara C, López-Otín C, Enríquez J A, Luque-García J L, Andrés V (2013). Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteomics, 91: 466–477
CrossRef
Pubmed
Google scholar
|
[99] |
Roos W P, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med, 12(9): 440–450
CrossRef
Pubmed
Google scholar
|
[100] |
Sahin E, Depinho R A (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464(7288): 520–528
CrossRef
Pubmed
Google scholar
|
[101] |
Scaffidi P, Misteli T (2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med, 11(4): 440–445
CrossRef
Pubmed
Google scholar
|
[102] |
Schmitt E, Paquet C, Beauchemin M, Bertrand R (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B, 8(6): 377–397
CrossRef
Pubmed
Google scholar
|
[103] |
Schreiber K H, Kennedy B K (2013). When lamins go bad: nuclear structure and disease. Cell, 152(6): 1365–1375
CrossRef
Pubmed
Google scholar
|
[104] |
Shiloh Y, Ziv Y (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol, 14(4): 197–210
CrossRef
Google scholar
|
[105] |
Shrivastav M, De Haro L P, Nickoloff J A (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res, 18(1): 134–147
CrossRef
Pubmed
Google scholar
|
[106] |
Shumaker D K, Dechat T, Kohlmaier A, Adam S A, Bozovsky M R, Erdos M R, Eriksson M, Goldman A E, Khuon S, Collins F S, Jenuwein T, Goldman R D (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA, 103(23): 8703–8708
CrossRef
Pubmed
Google scholar
|
[107] |
Singh M, Hunt C R, Pandita R K, Kumar R, Yang C R, Horikoshi N, Bachoo R, Serag S, Story M D, Shay J W, Powell S N, Gupta A, Jeffery J, Pandita S, Chen B P, Deckbar D, Löbrich M, Yang Q, Khanna K K, Worman H J, Pandita T K (2013). Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol Cell Biol, 33(6): 1210–1222
CrossRef
Pubmed
Google scholar
|
[108] |
Sirbu B M, Cortez D (2013). DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol, 5(8): a012724
CrossRef
Pubmed
Google scholar
|
[109] |
Stewart G S, Wang B, Bignell C R, Taylor A M, Elledge S J (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 421(6926): 961–966
CrossRef
Pubmed
Google scholar
|
[110] |
Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo P A (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res, 64(7): 2390–2396
CrossRef
Pubmed
Google scholar
|
[111] |
Sun Y, Jiang X, Chen S, Fernandes N, Price B D (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA, 102(37): 13182–13187
CrossRef
Pubmed
Google scholar
|
[112] |
Sun Y, Jiang X, Xu Y, Ayrapetov M K, Moreau L A, Whetstine J R, Price B D (2009). Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol, 11(11): 1376–1382
CrossRef
Pubmed
Google scholar
|
[113] |
Tang H, Hilton B, Musich P R, Fang D Z, Zou Y (2012). Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome. Aging Cell, 11(2): 363–365
CrossRef
Pubmed
Google scholar
|
[114] |
Tubbs A T, Sleckman B P (2014). ATM deficiency: revealing the pathways to cancer. Cell Cycle, 13(19): 2992
CrossRef
Pubmed
Google scholar
|
[115] |
Varga R, Eriksson M, Erdos M R, Olive M, Harten I, Kolodgie F, Capell B C, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon L B, Virmani R, Wight T N, Nabel E G, Collins F S (2006). Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 103(9): 3250–3255
CrossRef
Pubmed
Google scholar
|
[116] |
Verstraeten V L, Peckham L A, Olive M, Capell B C, Collins F S, Nabel E G, Young S G, Fong L G, Lammerding J (2011). Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci USA, 108(12): 4997–5002
CrossRef
Pubmed
Google scholar
|
[117] |
Viteri G, Chung Y W, Stadtman E R (2010). Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev, 131(1): 2–8
CrossRef
Pubmed
Google scholar
|
[118] |
Ward I M, Chen J (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 276(51): 47759–47762
Pubmed
|
[119] |
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2015). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell
Pubmed
|
[120] |
Xiong Z M, Choi J Y, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2016). Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell, 15(2): 279–290
CrossRef
Pubmed
Google scholar
|
[121] |
Yang S H, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo M O, Young S G, Fong L G (2006). A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest, 116(8): 2115–2121
CrossRef
Pubmed
Google scholar
|
[122] |
Yang S H, Qiao X, Fong L G, Young S G (2008). Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta, 1781(1-2): 36–39
CrossRef
Pubmed
Google scholar
|
[123] |
Zhang H, Kieckhaefer J E, Cao K (2013). Mouse models of laminopathies. Aging Cell, 12(1): 2–10
CrossRef
Pubmed
Google scholar
|
[124] |
Zhang H, Xiong Z M, Cao K (2014). Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc Natl Acad Sci USA, 111(22): E2261–E2270
CrossRef
Pubmed
Google scholar
|
[125] |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla R D, Reddy P, Esteban C R, Tang F, Liu G H, Belmonte J C (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 348(6239): 1160–1163
CrossRef
Pubmed
Google scholar
|
[126] |
Zhou B B, Elledge S J (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408(6811): 433–439
CrossRef
Pubmed
Google scholar
|
[127] |
Zimmermann M, Lottersberger F, Buonomo S B, Sfeir A, de Lange T (2013). 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science, 339(6120): 700–704
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |