Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease
Received date: 15 Aug 2016
Accepted date: 20 Oct 2016
Published date: 26 Dec 2016
Copyright
BACKGROUND: Parkinsonʼs disease (PD) is a common, age-dependent degenerative neurological disorder impairing motor control function and cognition. A key pathology of PD is a degeneration of the nigrostriatal dopamine system, leading to a severe dopamine denervation in the striatum and dynsfunction of the striatal neural circuits.
OBJECTIVE: To better understand the pathophysiology of the nigrostriatal dopamine denervation and to discover better treatments, animal PD models are needed.
METHODS: The authors’ original research on the transcription factor Pitx3 null mutant mice and the relevant literature were reviewed.
RESULTS: An important feature of an animal PD model is the severe, PD-like nigrostriatal dopamine denervation. This feature is provided in the transcription factor Pitx3 null mutant mice. These mice have a severe and bilateral nigral dopamine neuron loss and dopamine denervation in the dorsal striatum, while the dopamine neuron loss in the ventral tegmental area and dopamine denervation in the ventral striatum are moderate, creating a dorsal-ventral dopamine loss gradient and mimicking the dopamine denervation pattern in PD. Pitx3 null mice show motor function deficits in the balance beam and pole tests and these deficits are reversed by L-3,4-dihydroxyphenylalanine (L-dopa). These mice also show impaired cognitive functions as indicated by reduced motor learning and avoidance memory. L-dopa, D1 agonists and, to a lesser extent, D2 agonists, induce normal horizontal movements (walking) and also dyskinesia-like movements consisting of vertical body trunk movements and waving paw movements.
CONCLUSIONS: The easy-to-maintain Pitx3 null mice with an autogenic, consistent and gradient dopamine denervation are a convenient and suitable mouse model to study the consequences of dopamine loss in PD and to test dopaminergic replacement therapies for PD.
Fu-Ming Zhou , Li Li , Juming Yue , John A. Dani . Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease[J]. Frontiers in Biology, 2016 , 11(6) : 427 -438 . DOI: 10.1007/s11515-016-1429-8
1 |
Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, Burn D, Barone P, Pagonabarraga J, Allcock L, Santangelo G, Foltynie T, Janvin C, Larsen J P, Barker R A, Emre M (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75(12): 1062–1069
|
2 |
Aarsland D, Kurz M W (2010). The epidemiology of dementia associated with Parkinson disease. J Neurol Sci, 289(1-2): 18–22
|
3 |
Alexander G E, DeLong M R, Strick P L (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9(1): 357–381
|
4 |
Ardayfio P, Moon J, Leung K K, Youn-Hwang D, Kim K S (2008). Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis, 31(3): 406–412
|
5 |
Bagga V, Dunnett S B, Fricker R A (2015). The 6-OHDA mouse model of Parkinson’s disease- Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res, 288: 107–117
|
6 |
Ballard P A, Tetrud J W, Langston J W (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology, 35(7): 949–956
|
7 |
Bastide M F, Meissner W G, Picconi B, Fasano S, Fernagut P O, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko W K, Simola N, Morelli M, Groc L, Rodriguez M C, Gurevich E V, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman A R, Kang U J, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015). Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol, 132: 96–168
|
8 |
Bateup H S, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier D J, Fisone G, Nestler E J, Greengard P (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA, 107(33): 14845–14850
|
9 |
Beaulieu-Boire I, Lang A E (2015). Behavioral effects of levodopa. Mov Disord, 30(1): 90–102
|
10 |
Beeler J A, Cao Z F, Kheirbek M A, Zhuang X (2009). Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology, 34(5): 1149–1161
|
11 |
Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton D W, Khoury A, Megarbane A, Bejjani B A, Traboulsi E I (2006). Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci, 47(4): 1274–1280
|
12 |
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318(1): 121–134
|
13 |
Carlsson A (2001). A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture. Biosci Rep, 21(6): 691–710
|
14 |
Chen L, Xie Z, Turkson S, Zhuang X (2015). A53T human -synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci, 35: 890–905
|
15 |
Chesselet MF, Richter F (2011). Modelling of Parkinson’s disease in mice. Lancet Neurol, 10:1108–18
|
16 |
Chiken S, Sato A, Ohta C, Kurokawa M, Arai S, Maeshima J, Sunayama-Morita T, Sasaoka T, Nambu A(2015). Dopamine D1 receptor-mediated transmission maintains information flow through the cortico-striato-entopeduncular direct pathway to release movements. Cereb Cortex, 25:4885–97
|
17 |
Chu H Y, Atherton J F, Wokosin D, Surmeier D J, Bevan M D (2015). Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron, 85(2): 364–376
|
18 |
Coelho M, Ferreira J J (2012). Late-stage Parkinson disease. Nat Rev Neurol, 8(8):435–42
|
19 |
Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain, 124:2503–2512
|
20 |
Ciliax B J, Drash G W, Staley J K, Haber S, Mobley C J, Miller G W, Mufson E J, Mash D C, Levey A I (1999). Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol, 409(1): 38–56
|
21 |
Damier P, Hirsch E C, Agid Y, Graybiel A M (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122(Pt 8): 1437–1448
|
22 |
Darvas M, Palmiter R D (2009). Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci USA, 106(34): 14664–14669
|
23 |
de Lau L M, Breteler M M (2006). Epidemiology of Parkinson’s disease. Lancet Neurol, 5(6): 525–535
|
24 |
Del Tredici K, Braak H (2016). Review: Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol, 42(1): 33–50
|
25 |
Deng Y, Lanciego J, Kerkerian-Le-Goff L, Coulon P, Salin P, Kachidian P, Lei W, Del Mar N, Reiner A (2015). Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front Syst Neurosci, 9: 51
|
26 |
Ding S, Li L, Zhou F M (2015). Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol, 113(6): 1697–1711
|
27 |
Ding Y, Restrepo J, Won L, Hwang D Y, Kim K S, Kang U J (2007). Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson’s disease. Neurobiol Dis, 27(1): 11–23
|
28 |
Ding Y, Won L, Britt J P, Lim S A, McGehee D S, Kang U J (2011). Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA, 108(2): 840–845
|
29 |
Doig N M, Moss J, Bolam J P (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci, 30(44): 14610–14618
|
30 |
Doucet J P, Nakabeppu Y, Bedard P J, Hope B T, Nestler E J, Jasmin B J, Chen J S, Iadarola M J, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson G S (1996). Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci, 8(2): 365–381
|
31 |
Durieux P F, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann S N, de Kerchove d’Exaerde A (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci, 12(4): 393–395
|
32 |
Durieux P F, Schiffmann S N, de Kerchove d’Exaerde A (2012). Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J, 31(3): 640–653
|
33 |
Ekstrand M I, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F S, Trifunovic A, Hoffer B, Cullheim S, Mohammed A H, Olson L, Larsson N G (2007). Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA, 104(4): 1325–1330
|
34 |
Fahn S (2015). The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord, 30(1): 4–18
|
35 |
Francis T C, Chandra R, Friend D M, Finkel E, Dayrit G, Miranda J, Brooks J M, Iñiguez S D, O'Donnell P, Kravitz A, Lobo M K (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry, 77: 212–22
|
36 |
Franco V, Turner R S (2012). Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis, 47(1): 114–125
|
37 |
Friend D M, Kravitz A V (2014). Working together: basal ganglia pathways in action selection. Trends Neurosci, 37(6): 301–303
|
38 |
Galati S, Stanzione P, D’Angelo V, Fedele E, Marzetti F, Sancesario G, Procopio T, Stefani A (2009). The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J Physiol, 587(Pt 18): 4405–4423
|
39 |
Gellhaar S, Marcellino D, Abrams M B, Galter D (2015). Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice. Genes Brain Behav, 14(3): 260–270
|
40 |
Gerfen C R, Bolam J P (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng K Y (eds). Handbook of Basal Ganglia Structure and Function. Academic Press. Pages 3–28
|
41 |
German D C, Manaye K F (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol, 331(3): 297–309
|
42 |
Glajch K E, Fleming S M, Surmeier D J, Osten P (2012). Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behav Brain Res, 230(2): 309–316
|
43 |
Glass M, Dragunow M, Faull R L (2000). The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3): 505–519
|
44 |
Goedert M, Spillantini M G, Del Tredici K, Braak H (2013). 100 years of Lewy pathology. Nat Rev Neurol, 9(1): 13–24
|
45 |
Golden J P, Demaro J A 3rd, Knoten A, Hoshi M, Pehek E, Johnson E M Jr, Gereau R W 4th, Jain S (2013). Dopamine-dependent compensation maintains motor behavior in mice with developmental ablation of dopaminergic neurons. J Neurosci, 33(43): 17095–17107
|
46 |
Gotham A M, Brown R G, Marsden C D (1988). ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain, 111(Pt 2): 299–321
|
47 |
Graybiel A M, Grafton S T (2015). The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol, 7(8): a021691
|
48 |
Guo Y, Le W D, Jankovic J, Yang H R, Xu H B, Xie W J, Song Z, Deng H (2011). Systematic genetic analysis of the PITX3 gene in patients with Parkinson disease. Mov Disord, 26(9): 1729–1732
|
49 |
Haber S N (2016). Corticostriatal circuitry. Dialogues Clin Neurosci, 18(1): 7–21
|
50 |
Haber S N, Knutson B (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1): 4–26
|
51 |
Hardman C D, Henderson J M, Finkelstein D I, Horne M K, Paxinos G, Halliday G M (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol, 445(3): 238–255
|
52 |
Hikosaka O, Takikawa Y, Kawagoe R (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev, 80(3): 953–978
|
53 |
Hornykiewicz O (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2): S2–S9
|
54 |
Hornykiewicz O (2001). Chemical neuroanatomy of the basal ganglia—normal and in Parkinson’s disease. J Chem Neuroanat, 22(1-2): 3–12
|
55 |
Huerta-Ocampo I, Mena-Segovia J, Bolam J P (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct, 219(5): 1787–1800
|
56 |
Hurd Y L, Suzuki M, Sedvall G C (2001). D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat, 22(1-2): 127–137
|
57 |
Hwang D Y, Ardayfio P, Kang U J, Semina E V, Kim K S (2003). Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res, 114(2): 123–131
|
58 |
Hwang D Y, Fleming S M, Ardayfio P, Moran-Gates T, Kim H, Tarazi F I, Chesselet M F, Kim K S (2005). 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci, 25(8): 2132–2137
|
59 |
Ikemoto S, Yang C, Tan A (2015). Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res, 290: 17–31
|
60 |
Jiménez-Jiménez F J, García-Martín E, Alonso-Navarro H, Agúndez J A ( 2014). PITX3 and risk for Parkinson’s disease: a systematic review and meta-analysis. Eur Neurol,71(1–2):49–56
|
61 |
Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees A J, the Parkinson’s Disease Research Group of the United Kingdom (2008). Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology, 71(7): 474–480
|
62 |
Kirik D, Rosenblad C, Björklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 152(2): 259–277
|
62a |
Kish S J, Shannak K, Hornykiewicz O (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med, 318(14): 876–880
|
63 |
Kita H, Kita T (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci, 31(28): 10311–10322
|
64 |
Kordower J H, Olanow C W, Dodiya H B, Chu Y, Beach T G, Adler C H, Halliday G M, Bartus R T (2013). Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain, 136(Pt 8): 2419–2431
|
65 |
Korotkova T M, Ponomarenko A A, Haas H L, Sergeeva O A (2005) Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci. 22:1287–93
|
66 |
Kravitz A V, Freeze B S, Parker P R, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626
|
67 |
Lane E L, Cheetham S C, Jenner P (2006). Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson’s disease? Exp Neurol, 197(2): 284–290
|
68 |
Le W, Zhang L, Xie W, Li S, Dani J A (2015). Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(-/-) mice. Neurobiol Aging, 36(12): 3314–3320
|
69 |
Lee C S, Sauer H, Bjorklund A (1996). Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by instrastriatal 6-hydroxydopamine in the rat. Neuroscience, 72(3): 641–653
|
70 |
Lees A J, Tolosa E, Olanow C W (2015). Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov Disord, 30(1): 19–36
|
71 |
Lemos J C, Friend D M, Kaplan A R, Shin J H, Rubinstein M, Kravitz A V, Alvarez V A (2016). Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling. Neuron, 90(4): 824–838
|
72 |
Levey A I, Hersch S M, Rye D B, Sunahara R K, Niznik H B, Kitt C A, Price D L, Maggio R, Brann M R, Ciliax B J (1993). Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A. 90:8861–8865
|
73 |
Lewis D A, Melchitzky D S, Sesack S R, Whitehead R E, Auh S, Sampson A (2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol, 432(1): 119–136
|
74 |
Li L, Qiu G, Ding S, Zhou F M (2013). Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res, 1491: 236–250
|
75 |
Li L, Zhou F M (2013). Parallel dopamine D1 receptor activity dependence of l-Dopa-induced normal movement and dyskinesia in mice. Neuroscience, 236: 66–76
|
76 |
Lobo M K, Zaman S, Damez-Werno D M, Koo J W, Bagot R C, DiNieri J A, Nugent A, Finkel E, Chaudhury D, Chandra R, Riberio E, Rabkin J, Mouzon E, Cachope R, Cheer J F, Han M H, Dietz D M, Self D W, Hurd Y L, Vialou V, Nestler E J (2013). DFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci, 33(47): 18381–18395
|
77 |
Luk K C, Rymar V V, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, Drouin J, Sadikot A F (2013). The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem, 125(6): 932–943
|
78 |
Marin C, Rodriguez-Oroz M C, Obeso J A (2006). Motor complications in Parkinson’s disease and the clinical significance of rotational behavior in the rat: have we wasted our time? Exp Neurol, 197(2): 269–274
|
79 |
Matsuda W, Furuta T, Nakamura K C, Hioki H, Fujiyama F, Arai R, Kaneko T (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci, 29(2): 444–453
|
80 |
McCann H, Cartwright H, Halliday G M (2016). Neuropathology of α-synuclein propagation and braak hypothesis. Mov Disord, 31(2): 152–160
|
81 |
McRitchie D A, Cartwright H R, Halliday G M (1997). Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol, 144(1): 202–213
|
82 |
Mitchell I J, Cooper A J, Griffiths M R (1999). The selective vulnerability of striatopallidal neurons. Prog Neurobiol, 59(6): 691–719
|
83 |
Nambu A (2008). Seven problems on the basal ganglia. Curr Opin Neurobiol, 18(6): 595–604
|
84 |
Nambu A (2011). Somatotopic organization of the primate Basal Ganglia. Front Neuroanat, 5: 26
|
85 |
Nelson E L, Liang C L, Sinton C M, German D C (1996). Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol, 369(3): 361–371
|
86 |
Nunes I, Tovmasian L T, Silva R M, Burke R E, Goff S P (2003). Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA, 100(7): 4245–4250
|
87 |
Nutt J G, Chung K A, Holford N H (2010). Dyskinesia and the antiparkinsonian response always temporally coincide: a retrospective study. Neurology, 74(15): 1191–1197
|
88 |
Obeso J A, Rodriguez-Oroz M C, Stamelou M, Bhatia K P, Burn D J (2014). The expanding universe of disorders of the basal ganglia. Lancet, 384(9942): 523–531
|
89 |
Olanow C W, Stern M B, Sethi K (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4): S1–S136
|
90 |
Oorschot D E (1996). Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol, 366(4): 580–599
|
91 |
Oorschot D E (2010). Cell types in the different nuclei of the basal ganglia. In: Steiner H, Tseng K Y (Eds.), Handbook of Basal Ganglia Structure and Function. London: Academic Press, pp. 63–74
|
92 |
Parkinson J (1817). An essay on shaking palsy. Originally published by Sherwood, Neely, and Jones (London, 1817), reprinted in J Neuropsychiatry Clin Neurosci. 2002 Spring; 14:223–36
|
93 |
Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz M C, Lehericy S, Bergman H, Agid Y, DeLong M R, Obeso J A (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci, 11(11): 760–772
|
94 |
Révy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014). Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions. Neuropsychopharmacology, 39(11): 2662–2672
|
95 |
Reyes S, Fu Y, Double K L, Cottam V, Thompson L H, Kirik D, Paxinos G, Watson C, Cooper H M, Halliday G M (2013). Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol Aging, 34(3): 873–886
|
96 |
Robbins T W, Cools R (2014). Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord, 29(5): 597–607
|
97 |
Rothwell P E, Fuccillo M V, Maxeiner S, Hayton S J, Gokce O, Lim B K, Fowler S C, Malenka R C, Südhof T C (2014). Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell, 158(1): 198–212
|
98 |
Samii A, Nutt J G, Ransom B R (2004). Parkinson’s disease. Lancet, 363(9423): 1783–1793
|
99 |
Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci, 33(17): 7583–7594
|
100 |
Sano H, Yasoshima Y, Matsushita N, Kaneko T, Kohno K, Pastan I, Kobayashi K (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci, 23(27): 9078–9088
|
101 |
Schwarting R K, Huston J P (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol, 50(2-3): 275–331
|
102 |
Semina E V, Ferrell R E, Mintz-Hittner H A, Bitoun P, Alward W L, Reiter R S, Funkhauser C, Daack-Hirsch S, Murray J C (1998). A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet, 19(2): 167–170
|
103 |
Semina E V, Murray J C, Reiter R, Hrstka R F, Graw J (2000). Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet, 9(11): 1575–1585
|
104 |
Semina E V, Reiter R S, Murray J C (1997). Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet, 6(12): 2109–2116
|
105 |
Sesack S R, Grace A A (2010). Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology, 35(1): 27–47
|
106 |
Siepel F J, Brønnick K S, Booij J, Ravina B M, Lebedev A V, Pereira J B, Grüner R, Aarsland D (2014). Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord, 29(14): 1802–1808
|
107 |
Simpson E H, Kellendonk C, Kandel E (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65(5): 585–596
|
108 |
Smidt M P, Smits S M, Bouwmeester H, Hamers F P, van der Linden A J, Hellemons A J, Graw J, Burbach J P (2004). Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development, 131(5): 1145–1155
|
109 |
Smidt M P, van Schaick H S, Lanctôt C, Tremblay J J, Cox J J, van der Kleij A A, Wolterink G, Drouin J, Burbach J P (1997). A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A. 94:13305–13310
|
110 |
Smith Y, Galvan A, Ellender T J, Doig N, Villalba R M, Huerta-Ocampo I, Wichmann T, Bolam J P (2014). The thalamostriatal system in normal and diseased states. Front Syst Neurosci, 8: 5
|
111 |
Smits S M, Burbach J P, Smidt M P (2006). Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol, 78(1): 1–16
|
112 |
Stern Y, Langston J W (1985). Intellectual changes in patients with MPTP-induced parkinsonism. Neurology, 35(10): 1506–1509
|
113 |
Stern Y, Tetrud J W, Martin W R, Kutner S J, Langston J W (1990). Cognitive change following MPTP exposure. Neurology, 40(2): 261–264
|
114 |
Svenningsson P, Westman E, Ballard C, Aarsland D (2012). Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol, 11(8): 697–707
|
115 |
Thiele S L, Warre R, Khademullah C S, Fahana N, Lo C, Lam D, Talwar S, Johnston T H, Brotchie J M, Nash J E (2011). Generation of a model of L-DOPA-induced dyskinesia in two different mouse strains. J Neurosci Methods, 197(2): 193–208
|
116 |
Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015). Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord, 30(9): 1155–1170
|
117 |
Ungerstedt U (1971). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl, 367(S367): 95–122
|
118 |
van den Munckhof P, Luk K C, Ste-Marie L, Montgomery J, Blanchet P J, Sadikot A F, Drouin J (2003). Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development, 130(11): 2535–2542
|
118a |
van den Munckhof P, Gilbert F, Chamberland M, Lévesque D, Drouin J. (2006). Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson's disease. J Neurochem, 96(1): 160–170
|
119 |
Varnum D S, Stevens L C (1968). Aphakia, a new mutation in the mouse. J Hered, 59(2): 147–150
|
120 |
Walker F O (2007). Huntington’s disease. Lancet, 369(9557): 218–228
|
121 |
Wei W, Li L, Yu G, Ding S, Li C, Zhou F M (2013). Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol, 110(9): 2203–2216
|
122 |
Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine L M, Eberling J, Espay A J, Foster E D, Leverenz J B, Litvan I, Richard I, Troyer M D, Hawkins K A, and the Parkinson’s Progression Markers Initiative (2015). Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord, 30(7): 919–927
|
123 |
Willard A M, Bouchard R S, Gittis A H (2015). Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience, 301: 254–267
|
124 |
Yarnall A J, Breen D P, Duncan G W, Khoo T K, Coleman S Y, Firbank M J, Nombela C, Winder-Rhodes S, Evans J R, Rowe J B, Mollenhauer B, Kruse N, Hudson G, Chinnery P F, O’Brien J T, Robbins T W, Wesnes K, Brooks D J, Barker R A, Burn D J, and the ICICLE-PD Study Group (2014). Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology, 82(4): 308–316
|
125 |
Yung K K, Bolam J P, Smith A D, Hersch S M, Ciliax B J, Levey A I (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience, 65(3): 709–730
|
126 |
Zhou F M (2016). The Substantia Nigra Pars Reticulata. In: Steiner H, K Tseng (eds.). Handbook of Basal Ganglia Structure and Function. pp. 293–316. Elsevier.
|
127 |
Zhou Q Y, Palmiter R D (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell, 83(7): 1197–1209
|
/
〈 | 〉 |