REVIEW

Finding neoepitopes in mouse models of personalized cancer immunotherapy

  • Sahar Al Seesi 1,2 ,
  • Alok Das Mohapatra 1 ,
  • Arpita Pawashe 1 ,
  • Ion I. Mandoiu 2 ,
  • Fei Duan , 1
Expand
  • 1. Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut Cancer Center, Farmington, CT 06030, USA
  • 2. Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA

Received date: 25 Apr 2016

Accepted date: 15 Aug 2016

Published date: 04 Nov 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Cancer immunotherapy uses one’s own immune system to fight cancerous cells. As immune system is hard-wired to distinguish self and non-self, cancer immunotherapy is predicted to target cancerous cells specifically, therefore is less toxic than chemotherapy and radiation therapy, two major treatments for cancer. Cancer immunologists have spent decades to search for the specific targets in cancerous cells.

METHODS: Due to the recent advances in high throughput sequencing and bioinformatics, evidence has merged that the neoantigens in cancerous cells are probably the cancer-specific targets that lead to the destruction of cancer. We will review the transplantable murine tumor models for cancer immunotherapy and the bioinformatics tools used to navigate mouse genome to identify tumor-rejecting neoantigens.

RESULTS: Several groups have independently identified point mutations that can be recognized by T cells of host immune system. It is consistent with the note that the formation of peptide-MHC I-TCR complex is critical to activate T cells. Both anchor residue and TCR-facing residue mutations have been reported. While TCR-facing residue mutations may directly activate specific T cells, anchor residue mutations improve the binding of peptides to MHC I molecules, which increases the presentation of peptides and the T cell activation indirectly.

CONCLUSIONS: Our work indicates that the affinity of neoepitopes for MHC I is not a predictor for anti-tumor immune responses in mice. Instead differential agretopic index (DAI), the numerical difference of epitope-MHC I affinities between the mutated and un-mutated sequences is a significant predictor. A similar bioinformatics pipeline has been developed to generate personalized vaccines to treat human ovarian cancer in a Phase I clinical trial.

Cite this article

Sahar Al Seesi , Alok Das Mohapatra , Arpita Pawashe , Ion I. Mandoiu , Fei Duan . Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Frontiers in Biology, 2016 , 11(5) : 366 -375 . DOI: 10.1007/s11515-016-1422-2

Acknowledgements

We acknowledge Dr. Pramod Srivastava for his inspiration, guidance and vision for this article and neoepitope research in general. Having been working on neoepitopes for over 30 years, Dr. Srivastava is a living legend who believes that the only cancer-specific epitopes are those epitopes derived from random passenger mutations from dividing cancerous cells.

Compliance with ethics guidelines

Sahar Al Seesi, Alok Das Mohapatra, Arpita Pawashe, Ion I. Mandoiu, and Fei Duan declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Al Seesi S, Tiagueu Y T, Zelikovsky A, Măndoiu I I (2014). Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. BMC Genomics, 15(8 Suppl 8): S2

DOI PMID

2
Basombrio M A (1970).Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res, 30(10): 2458–262

3
Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M, Bancarz I R, Banerjee S, Barbour S G, Baybayan P A, Benoit V A, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi MChang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims M M, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G D, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent M A, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O’Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, Vandevondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218): 53–59

DOI PMID

4
Berman J N, Chiu P P L, Dellaire G (2014). Preclinical animal models for cancer genomics..In: Dellair G, Berman J N, Arceci R J, eds Cancer Genomics: from Bench to Personalized Medicine, Elsevier Inc., 110–126

5
Bielas J H, Loeb K R, Rubin B P, True L D, Loeb L A (2006). From the Cover: Human cancers express a mutator phenotype. Proc Natl Acad Sci USA, 103(48):18238–18242

6
Blanchard T, Srivastava P K, Duan F (2013). Vaccines against advanced melanoma. Clin Dermatol, 31(2): 179–190

DOI PMID

7
Boland J F, Chung C C, Roberson D, Mitchell J, Zhang X, Im K M, He J, Chanock S J, Yeager M, Dean M (2013). The new sequencer on the block: comparison of Life Technology’s Proton sequencer to an Illumina HiSeq for whole-exome sequencing. Hum Genet, 132(10): 1153–1163

DOI PMID

8
Bolger A M, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120

DOI PMID

9
Boon T, van der Bruggen P (1996). Human tumor antigens recognized by T lymphocytes. J Exp Med, 183(3): 725–729

DOI PMID

10
Castle J C, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn A N, Britten C M, Huber C, Türeci O, Sahin U (2012). Exploiting the mutanome for tumor vaccination. Cancer Res, 72(5): 1081–1091

DOI PMID

11
Cheon D J, Orsulic S (2011). Mouse models of cancer. Annu Rev Pathol, 6(1): 95–119

DOI PMID

12
Dranoff G (2012). Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol, 12(1): 61–66

PMID

13
Duan F, Duitama J, Al Seesi S, Ayres C M, Corcelli S A, Pawashe A P, Blanchard T, McMahon D, Sidney J, Sette A, Baker B M, Mandoiu I I, Srivastava P K (2014). Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med, 211(11): 2231–2248

DOI PMID

14
Duan F, Lin Y, Liu C, Engelhorn M E, Cohen A D, Curran M, Sakaguchi S, Merghoub T, Terzulli S, Wolchok J D, Houghton A N (2009). Immune rejection of mouse tumors expressing mutated self. Cancer Res, 69(8): 3545–3553

DOI PMID

15
Duitama J, Srivastava P K, Măndoiu I I (2012). Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics, 13(2 Suppl 2): S6

DOI PMID

16
Feng J, Meyer C A, Wang Q, Liu J S, Shirley Liu X, Zhang Y (2012). GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28(21): 2782–2788

DOI PMID

17
Foley E J (1953). Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res, 13(12): 835–837

PMID

18
Gubin M M, Zhang X, Schuster H, Caron E, Ward J P, Noguchi T, Ivanova Y, Hundal J, Arthur C D, Krebber W J, Mulder G E, Toebes M, Vesely M D, Lam S S, Korman A J, Allison J P, Freeman G J, Sharpe A H, Pearce E L, Schumacher T N, Aebersold R, Rammensee H G, Melief C J, Mardis E R, Gillanders W E, Artyomov M N, Schreiber R D (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515(7528): 577–581

DOI PMID

19
Kim D, Langmead B, Salzberg S L (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12(4): 357–360

DOI PMID

20
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25

DOI PMID

21
Larsen M V, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1): 424

DOI PMID

22
Li B, Dewey C N (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1): 323

DOI PMID

23
Liu J, Blake S J, Smyth M J, Teng M W (2014). Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology, 3(8): e22

DOI PMID

24
Lundegaard C, Lund O, Nielsen M (2008). Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics, 24(11): 1397–1398

DOI PMID

25
Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora J P, Janssens C, Reddehase M J, Lejeune J, Boon T (1989). Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell, 58(2): 293–303

DOI PMID

26
Matsushita H, Vesely M D, Koboldt D C, Rickert C G, Uppaluri R, Magrini V J, Arthur C D, White J M, Chen Y S, Shea L K, Hundal J, Wendl M C, Demeter R, Wylie T, Allison J P, Smyth M J, Old L J, Mardis E R, Schreiber R D (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 482(7385): 400–404

DOI PMID

27
McGranahan N, Furness A J, Rosenthal R, Ramskov S, Lyngaa R, Saini S K, Jamal-Hanjani M, Wilson G A, Birkbak N J, Hiley C T, Watkins T B, Shafi S, Murugaesu N, Mitter R, Akarca A U, Linares J, Marafioti T, Henry J Y, Van Allen E M, Miao D, Schilling B, Schadendorf D, Garraway L A, Makarov V, Rizvi N A, Snyder A, Hellmann M D, Merghoub T, Wolchok J D, Shukla S A, Wu C J, Peggs K S, Chan T A, Hadrup S R, Quezada S A, Swanton C (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280): 1463–1469

DOI PMID

28
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20(9): 1297–1303

DOI PMID

29
Monach P A, Meredith S C, Siegel C T, Schreiber H (1995). A unique tumor antigen produced by a single amino acid substitution. Immunity, 2(1): 45–59

DOI PMID

30
Nicolae M, Mangul S, Măndoiu I I, Zelikovsky A (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol, 6(1): 9

DOI PMID

31
Noguchi Y, Chen Y T, Old L J (1994). A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA, 91(8): 3171–3175

DOI PMID

32
Nowell P C (1976). The clonal evolution of tumor cell populations. Science, 194(4260): 23–28

DOI PMID

33
Pandey V, Nutter R C, Prediger E ( 2008).Applied Biosystems SOLiD™ System: Ligation-Based Sequencing. In: Janitz M, ed. Next Generation Genome Sequencing. Wiley-VCH Verlag GmbH & Co. KGaA. p. 29–42

34
Prehn R T, Main J M (1957). Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst, 18(6): 769–778

PMID

35
Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 12(3): R22

DOI PMID

36
Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

DOI PMID

37
Schmieder R, Edwards R (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6): 863–864

DOI PMID

38
Schuler M M, Nastke M D, Stevanovikć S (2007). SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol, 409: 75–93

DOI PMID

39
Srivastava P K (2015). Neoepitopes of Cancers: Looking Back, Looking Ahead. Cancer Immunol Res, 3(9): 969–977

DOI PMID

40
Thomas R K, Nickerson E, Simons J F, Jänne P A, Tengs T, Yuza Y, Garraway L A, LaFramboise T, Lee J C, Shah K, O’Neill K, Sasaki H, Lindeman N, Wong K K, Borras A M, Gutmann E J, Dragnev K H, DeBiasi R, Chen T H, Glatt K A, Greulich H, Desany B, Lubeski C K, Brockman W, Alvarez P, Hutchison S K, Leamon J H, Ronan M T, Turenchalk G S, Egholm M, Sellers W R, Rothberg J M, Meyerson M (2006). Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med, 12(7): 852–855

DOI PMID

41
Tian S, Maile R, Collins E J, Frelinger J A (2007). CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol, 179(5): 2952–2960

DOI PMID

42
Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111

DOI PMID

43
Yadav M, Jhunjhunwala S, Phung Q T, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung T K, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill J R, Delamarre L (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 515(7528): 572–576

DOI PMID

44
Yates L R, Campbell P J (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11): 795–806

DOI PMID

Outlines

/