Finding neoepitopes in mouse models of personalized cancer immunotherapy

Sahar Al Seesi, Alok Das Mohapatra, Arpita Pawashe, Ion I. Mandoiu, Fei Duan

PDF(451 KB)
PDF(451 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (5) : 366-375. DOI: 10.1007/s11515-016-1422-2
REVIEW
REVIEW

Finding neoepitopes in mouse models of personalized cancer immunotherapy

Author information +
History +

Abstract

BACKGROUND: Cancer immunotherapy uses one’s own immune system to fight cancerous cells. As immune system is hard-wired to distinguish self and non-self, cancer immunotherapy is predicted to target cancerous cells specifically, therefore is less toxic than chemotherapy and radiation therapy, two major treatments for cancer. Cancer immunologists have spent decades to search for the specific targets in cancerous cells.

METHODS: Due to the recent advances in high throughput sequencing and bioinformatics, evidence has merged that the neoantigens in cancerous cells are probably the cancer-specific targets that lead to the destruction of cancer. We will review the transplantable murine tumor models for cancer immunotherapy and the bioinformatics tools used to navigate mouse genome to identify tumor-rejecting neoantigens.

RESULTS: Several groups have independently identified point mutations that can be recognized by T cells of host immune system. It is consistent with the note that the formation of peptide-MHC I-TCR complex is critical to activate T cells. Both anchor residue and TCR-facing residue mutations have been reported. While TCR-facing residue mutations may directly activate specific T cells, anchor residue mutations improve the binding of peptides to MHC I molecules, which increases the presentation of peptides and the T cell activation indirectly.

CONCLUSIONS: Our work indicates that the affinity of neoepitopes for MHC I is not a predictor for anti-tumor immune responses in mice. Instead differential agretopic index (DAI), the numerical difference of epitope-MHC I affinities between the mutated and un-mutated sequences is a significant predictor. A similar bioinformatics pipeline has been developed to generate personalized vaccines to treat human ovarian cancer in a Phase I clinical trial.

Keywords

cancer immunotherapy / tumor antigens / neoantigens / neoepitopes / differential agretopic index (DAI) / RNA-Seq / single nucleotide variant (SNV)

Cite this article

Download citation ▾
Sahar Al Seesi, Alok Das Mohapatra, Arpita Pawashe, Ion I. Mandoiu, Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy. Front. Biol., 2016, 11(5): 366‒375 https://doi.org/10.1007/s11515-016-1422-2

References

[1]
Al Seesi S, Tiagueu Y T, Zelikovsky A, Măndoiu I I (2014). Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. BMC Genomics, 15(8 Suppl 8): S2
CrossRef Pubmed Google scholar
[2]
Basombrio M A (1970).Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res, 30(10): 2458–262
[3]
Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M, Bancarz I R, Banerjee S, Barbour S G, Baybayan P A, Benoit V A, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi MChang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims M M, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G D, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent M A, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O’Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, Vandevondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218): 53–59
CrossRef Pubmed Google scholar
[4]
Berman J N, Chiu P P L, Dellaire G (2014). Preclinical animal models for cancer genomics..In: Dellair G, Berman J N, Arceci R J, eds Cancer Genomics: from Bench to Personalized Medicine, Elsevier Inc., 110–126
[5]
Bielas J H, Loeb K R, Rubin B P, True L D, Loeb L A (2006). From the Cover: Human cancers express a mutator phenotype. Proc Natl Acad Sci USA, 103(48):18238–18242
[6]
Blanchard T, Srivastava P K, Duan F (2013). Vaccines against advanced melanoma. Clin Dermatol, 31(2): 179–190
CrossRef Pubmed Google scholar
[7]
Boland J F, Chung C C, Roberson D, Mitchell J, Zhang X, Im K M, He J, Chanock S J, Yeager M, Dean M (2013). The new sequencer on the block: comparison of Life Technology’s Proton sequencer to an Illumina HiSeq for whole-exome sequencing. Hum Genet, 132(10): 1153–1163
CrossRef Pubmed Google scholar
[8]
Bolger A M, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120
CrossRef Pubmed Google scholar
[9]
Boon T, van der Bruggen P (1996). Human tumor antigens recognized by T lymphocytes. J Exp Med, 183(3): 725–729
CrossRef Pubmed Google scholar
[10]
Castle J C, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn A N, Britten C M, Huber C, Türeci O, Sahin U (2012). Exploiting the mutanome for tumor vaccination. Cancer Res, 72(5): 1081–1091
CrossRef Pubmed Google scholar
[11]
Cheon D J, Orsulic S (2011). Mouse models of cancer. Annu Rev Pathol, 6(1): 95–119
CrossRef Pubmed Google scholar
[12]
Dranoff G (2012). Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol, 12(1): 61–66
Pubmed
[13]
Duan F, Duitama J, Al Seesi S, Ayres C M, Corcelli S A, Pawashe A P, Blanchard T, McMahon D, Sidney J, Sette A, Baker B M, Mandoiu I I, Srivastava P K (2014). Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med, 211(11): 2231–2248
CrossRef Pubmed Google scholar
[14]
Duan F, Lin Y, Liu C, Engelhorn M E, Cohen A D, Curran M, Sakaguchi S, Merghoub T, Terzulli S, Wolchok J D, Houghton A N (2009). Immune rejection of mouse tumors expressing mutated self. Cancer Res, 69(8): 3545–3553
CrossRef Pubmed Google scholar
[15]
Duitama J, Srivastava P K, Măndoiu I I (2012). Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics, 13(2 Suppl 2): S6
CrossRef Pubmed Google scholar
[16]
Feng J, Meyer C A, Wang Q, Liu J S, Shirley Liu X, Zhang Y (2012). GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28(21): 2782–2788
CrossRef Pubmed Google scholar
[17]
Foley E J (1953). Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res, 13(12): 835–837
Pubmed
[18]
Gubin M M, Zhang X, Schuster H, Caron E, Ward J P, Noguchi T, Ivanova Y, Hundal J, Arthur C D, Krebber W J, Mulder G E, Toebes M, Vesely M D, Lam S S, Korman A J, Allison J P, Freeman G J, Sharpe A H, Pearce E L, Schumacher T N, Aebersold R, Rammensee H G, Melief C J, Mardis E R, Gillanders W E, Artyomov M N, Schreiber R D (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515(7528): 577–581
CrossRef Pubmed Google scholar
[19]
Kim D, Langmead B, Salzberg S L (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12(4): 357–360
CrossRef Pubmed Google scholar
[20]
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
CrossRef Pubmed Google scholar
[21]
Larsen M V, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1): 424
CrossRef Pubmed Google scholar
[22]
Li B, Dewey C N (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1): 323
CrossRef Pubmed Google scholar
[23]
Liu J, Blake S J, Smyth M J, Teng M W (2014). Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology, 3(8): e22
CrossRef Pubmed Google scholar
[24]
Lundegaard C, Lund O, Nielsen M (2008). Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics, 24(11): 1397–1398
CrossRef Pubmed Google scholar
[25]
Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora J P, Janssens C, Reddehase M J, Lejeune J, Boon T (1989). Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell, 58(2): 293–303
CrossRef Pubmed Google scholar
[26]
Matsushita H, Vesely M D, Koboldt D C, Rickert C G, Uppaluri R, Magrini V J, Arthur C D, White J M, Chen Y S, Shea L K, Hundal J, Wendl M C, Demeter R, Wylie T, Allison J P, Smyth M J, Old L J, Mardis E R, Schreiber R D (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 482(7385): 400–404
CrossRef Pubmed Google scholar
[27]
McGranahan N, Furness A J, Rosenthal R, Ramskov S, Lyngaa R, Saini S K, Jamal-Hanjani M, Wilson G A, Birkbak N J, Hiley C T, Watkins T B, Shafi S, Murugaesu N, Mitter R, Akarca A U, Linares J, Marafioti T, Henry J Y, Van Allen E M, Miao D, Schilling B, Schadendorf D, Garraway L A, Makarov V, Rizvi N A, Snyder A, Hellmann M D, Merghoub T, Wolchok J D, Shukla S A, Wu C J, Peggs K S, Chan T A, Hadrup S R, Quezada S A, Swanton C (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280): 1463–1469
CrossRef Pubmed Google scholar
[28]
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20(9): 1297–1303
CrossRef Pubmed Google scholar
[29]
Monach P A, Meredith S C, Siegel C T, Schreiber H (1995). A unique tumor antigen produced by a single amino acid substitution. Immunity, 2(1): 45–59
CrossRef Pubmed Google scholar
[30]
Nicolae M, Mangul S, Măndoiu I I, Zelikovsky A (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol, 6(1): 9
CrossRef Pubmed Google scholar
[31]
Noguchi Y, Chen Y T, Old L J (1994). A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA, 91(8): 3171–3175
CrossRef Pubmed Google scholar
[32]
Nowell P C (1976). The clonal evolution of tumor cell populations. Science, 194(4260): 23–28
CrossRef Pubmed Google scholar
[33]
Pandey V, Nutter R C, Prediger E ( 2008).Applied Biosystems SOLiD™ System: Ligation-Based Sequencing. In: Janitz M, ed. Next Generation Genome Sequencing. Wiley-VCH Verlag GmbH & Co. KGaA. p. 29–42
[34]
Prehn R T, Main J M (1957). Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst, 18(6): 769–778
Pubmed
[35]
Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 12(3): R22
CrossRef Pubmed Google scholar
[36]
Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
CrossRef Pubmed Google scholar
[37]
Schmieder R, Edwards R (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6): 863–864
CrossRef Pubmed Google scholar
[38]
Schuler M M, Nastke M D, Stevanovikć S (2007). SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol, 409: 75–93
CrossRef Pubmed Google scholar
[39]
Srivastava P K (2015). Neoepitopes of Cancers: Looking Back, Looking Ahead. Cancer Immunol Res, 3(9): 969–977
CrossRef Pubmed Google scholar
[40]
Thomas R K, Nickerson E, Simons J F, Jänne P A, Tengs T, Yuza Y, Garraway L A, LaFramboise T, Lee J C, Shah K, O’Neill K, Sasaki H, Lindeman N, Wong K K, Borras A M, Gutmann E J, Dragnev K H, DeBiasi R, Chen T H, Glatt K A, Greulich H, Desany B, Lubeski C K, Brockman W, Alvarez P, Hutchison S K, Leamon J H, Ronan M T, Turenchalk G S, Egholm M, Sellers W R, Rothberg J M, Meyerson M (2006). Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med, 12(7): 852–855
CrossRef Pubmed Google scholar
[41]
Tian S, Maile R, Collins E J, Frelinger J A (2007). CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol, 179(5): 2952–2960
CrossRef Pubmed Google scholar
[42]
Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111
CrossRef Pubmed Google scholar
[43]
Yadav M, Jhunjhunwala S, Phung Q T, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung T K, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill J R, Delamarre L (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 515(7528): 572–576
CrossRef Pubmed Google scholar
[44]
Yates L R, Campbell P J (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11): 795–806
CrossRef Pubmed Google scholar

Acknowledgements

We acknowledge Dr. Pramod Srivastava for his inspiration, guidance and vision for this article and neoepitope research in general. Having been working on neoepitopes for over 30 years, Dr. Srivastava is a living legend who believes that the only cancer-specific epitopes are those epitopes derived from random passenger mutations from dividing cancerous cells.

Compliance with ethics guidelines

Sahar Al Seesi, Alok Das Mohapatra, Arpita Pawashe, Ion I. Mandoiu, and Fei Duan declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(451 KB)

Accesses

Citations

Detail

Sections
Recommended

/