REVIEW

Metabolism of pluripotent stem cells

  • Liang Hu ,
  • Edward Trope ,
  • Qi-Long Ying
Expand
  • Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

Received date: 19 May 2016

Accepted date: 26 Jul 2016

Published date: 04 Nov 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.

OBJECTIVE: To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.

METHODS: A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”

RESULTS: Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.

CONCLUSION: Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.

Cite this article

Liang Hu , Edward Trope , Qi-Long Ying . Metabolism of pluripotent stem cells[J]. Frontiers in Biology, 2016 , 11(5) : 355 -365 . DOI: 10.1007/s11515-016-1417-z

Acknowledgements

The design of Fig. 1 was aided by materials from ScienceSlides (http://www.visiscience.com). The research in Ying laboratory was supported by National Institutes of Health (R01 OD010926), California Institute for Regenerative Medicine (CIRM) New Faculty Award II (RN2-00938), CIRM Scientific Excellence through Exploration and Development (SEED) Grant (RS1-00327), and Chen Yong Foundation of the Zhongmei Group.

Compliance with ethics guidelines

Liang Hu, Edward Trope, and Qi-Long Ying declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Adamo A, Barrero M J, Izpisua Belmonte J C (2011). LSD1 and pluripotency: a new player in the network. Cell Cycle, 10(19): 3215–3216

DOI PMID

2
Agathocleous M, Harris W A (2013). Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol, 23(10): 484–492

DOI PMID

3
Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P (2004). Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem, 279(7): 5288–5297

DOI PMID

4
Bigarella C L, Liang R, Ghaffari S (2014). Stem cells and the impact of ROS signaling. Development, 141(22): 4206–4218

DOI PMID

5
Blaschke K, Ebata K T, Karimi M M, Zepeda-Martínez J A, Goyal P, Mahapatra S, Tam A, Laird D J, Hirst M, Rao A, Lorincz M C, Ramalho-Santos M (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500(7461): 222–226

DOI PMID

6
Brinster R L, Troike D E (1979). Requirements for blastocyst development in vitro. J Anim Sci, 49(Suppl 2): 26–34

PMID

7
Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150): 191–195

DOI PMID

8
Cao Y, Guo W T, Tian S, He X, Wang X W, Liu X, Gu K L, Ma X, Huang D, Hu L, Cai Y, Zhang H, Wang Y, Gao P (2015). miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J, 34(5): 609–623

DOI PMID

9
Carey B W, Finley L W, Cross J R, Allis C D, Thompson C B (2015). Intracellular a-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539): 413–416

DOI PMID

10
Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, Wang X, Hu X, Gu T, Zhou Z, Liu J, Liu J, Wu H, Mao S Q, Mo K, Li Y, Lai K, Qi J, Yao H, Pan G, Xu G L, Pei D (2013). Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet, 45(12): 1504–1509

DOI PMID

11
Cho Y M, Kwon S, Pak Y K, Seol H W, Choi Y M, Park D J, Park K S, Lee H K (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun, 348(4): 1472–1478

DOI PMID

12
Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A, De Cesare D, De Falco S, Angelini C, Scita G, Patriarca E J, Matarazzo M R, Minchiotti G (2013). L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep, 1(4): 307–321

DOI PMID

13
De Bonis M L, Ortega S, Blasco M A (2014). SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Rep, 2(5): 690–706

DOI PMID

14
De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch H G, Lensch M W, Lujan E, Pei D, Rossant J, Wernig M, Park P J, Daley G Q (2015). Hallmarks of pluripotency. Nature, 525(7570): 469–478

DOI PMID

15
Dunning K R, Cashman K, Russell D L, Thompson J G, Norman R J, Robker R L (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod, 83(6): 909–918

DOI PMID

16
Eagle H (1959). Amino acid metabolism in mammalian cell cultures. Science, 130(3373): 432–437

DOI PMID

17
Eagle H, Oyama V I, Levy M, Horton C L, Fleischman R (1956). The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J Biol Chem, 218(2): 607–616

PMID

18
Edgar A J (2002). The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet, 3(1): 18

DOI PMID

19
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156

DOI PMID

20
Folmes C D, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271

DOI PMID

21
Forristal C E, Christensen D R, Chinnery F E, Petruzzelli R, Parry K L, Sanchez-Elsner T, Houghton F D (2013). Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells. PLoS ONE, 8(5): e62507

DOI PMID

22
Garcia-Gonzalo F R, Izpisúa Belmonte J C (2008). Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE, 3(1): e1384

DOI PMID

23
Haberland M, Montgomery R L, Olson E N (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 10(1): 32–42

DOI PMID

24
Han C, Gu H, Wang J, Lu W, Mei Y, Wu M (2013). Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells, 31(5): 953–965

DOI PMID

25
Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674

DOI PMID

26
Hart G W (2014). Three Decades of Research on O-GlcNAcylation- A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne), 5: 183

DOI PMID

27
Hart G W, Slawson C, Ramirez-Correa G, Lagerlof O (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem, 80(1): 825–858

DOI PMID

28
Hay N, Sonenberg N (2004). Upstream and downstream of mTOR. Genes Dev, 18(16): 1926–1945

DOI PMID

29
Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012). FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun, 3: 758

DOI PMID

30
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256

DOI PMID

31
Jang H, Kim T W, Yoon S, Choi S Y, Kang T W, Kim S Y, Kwon Y W, Cho E J, Youn H D (2012). O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell, 11(1): 62–74

DOI PMID

32
Kang J X, Wan J B, He C (2014). Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells, 32(5): 1092–1098

DOI PMID

33
Kim H, Jang H, Kim T W, Kang B H, Lee S E, Jeon Y K, Chung D H, Choi J, Shin J, Cho E J, Youn H D (2015). Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 33(9): 2699–2711

DOI PMID

34
Kim H, Wu J, Ye S, Tai C I, Zhou X, Yan H, Li P, Pera M, Ying Q L (2013). Modulation of b-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun, 4: 2403

DOI PMID

35
Kim J, Chu J, Shen X, Wang J, Orkin S H (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049–1061

DOI PMID

36
Klose R J, Zhang Y (2007). Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 8(4): 307–318

DOI PMID

37
Kobayashi H, Kikyo N (2015). Epigenetic regulation of open chromatin in pluripotent stem cells. Transl Res, 165(1): 18–27

DOI PMID

38
Lane A N, Fan T W (2015). Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res, 43(4): 2466–2485

DOI PMID

39
Lunt S Y, Vander Heiden M G (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 27(1): 441–464

DOI PMID

40
Mali P, Chou B K, Yen J, Ye Z, Zou J, Dowey S, Brodsky R A, Ohm J E, Yu W, Baylin S B, Yusa K, Bradley A, Meyers D J, Mukherjee C, Cole P A, Cheng L (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28(4): 713–720

DOI PMID

41
Mandal S, Lindgren A G, Srivastava A S, Clark A T, Banerjee U (2011). Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells, 29(3): 486–495

DOI PMID

42
Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, Kuppusamy K T, Moon R T, Ruohola-Baker H (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell, 14(5): 592–605

DOI PMID

43
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab, 21(3): 392–402

DOI PMID

44
Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Izpisua Belmonte J C (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 22(1): 168–177

DOI PMID

45
Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28(4): 721–733

DOI PMID

46
Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker E E, Ralser M, Cramer T, Adjaye J (2014). HIF1a modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells, 32(2): 364–376

DOI PMID

47
Ryu J M, Han H J (2011). L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem, 286(27): 23667–23678

DOI PMID

48
Ryu J M, Lee H J, Jung Y H, Lee K H, Kim D I, Kim J Y, Ko S H, Choi G E, Chai I I, Song E J, Oh J Y, Lee S J, Han H J (2015). Regulation of Stem Cell Fate by ROS-mediated Alteration of Metabolism. Int J Stem Cells, 8(1): 24–35

DOI PMID

49
Segev H, Fishman B, Schulman R, Itskovitz-Eldor J (2012). The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment. Stem Cells Dev, 21(10): 1653–1661

DOI PMID

50
Sharma A, Diecke S, Zhang W Y, Lan F, He C, Mordwinkin N M, Chua K F, Wu J C (2013). The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem, 288(25): 18439–18447

DOI PMID

51
Shin J H, Zhang L, Murillo-Sauca O, Kim J, Kohrt H E, Bui J D, Sunwoo J B (2013). Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci USA, 110(30): 12391–12396

DOI PMID

52
Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab, 19(5): 780–794

DOI PMID

53
Shyh-Chang N, Daley G Q (2015). Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metab, 21(3): 349–350

DOI PMID

54
Shyh-Chang N, Locasale J W, Lyssiotis C A, Zheng Y, Teo R Y, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer J J, Zhu H, Asara J M, Daley G Q, Cantley L C (2013). Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science, 339(6116): 222–226

DOI PMID

55
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer K A, Devi A, Detraux D, Gu H, Battle S L, Showalter M, Valensisi C, Bielas J H, Ericson N G, Margaretha L, Robitaille A M, Margineantu D, Fiehn O, Hockenbery D, Blau C A, Raftery D, Margolin A A, Hawkins R D, Moon R T, Ware C B, Ruohola-Baker H (2015). The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol, 17(12): 1523–1535

DOI PMID

56
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

DOI PMID

57
Takehara T, Teramura T, Onodera Y, Hamanishi C, Fukuda K (2012). Reduced oxygen concentration enhances conversion of embryonic stem cells to epiblast stem cells. Stem Cells Dev, 21(8): 1239–1249

DOI PMID

58
Thomson J A, Odorico J S (2000). Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol, 18(2): 53–57

DOI PMID

59
Trounson A O, Leeton J F, Wood C, Webb J, Wood J (1981). Pregnancies in humans by fertilization in vitro and embryo transfer in the controlled ovulatory cycle. Science, 212(4495): 681–682

DOI PMID

60
Vozza A, Parisi G, De Leonardis F, Lasorsa F M, Castegna A, Amorese D, Marmo R, Calcagnile V M, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014). UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA, 111(3): 960–965

DOI PMID

61
Wang J, Alexander P, McKnight S L (2011). Metabolic specialization of mouse embryonic stem cells. Cold Spring Harb Symp Quant Biol, 76(0): 183–193

DOI PMID

62
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939): 435–439

DOI PMID

63
Washington J M, Rathjen J, Felquer F, Lonic A, Bettess M D, Hamra N, Semendric L, Tan B S, Lake J A, Keough R A, Morris M B, Rathjen P D (2010). L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol, 298(5): C982–C992

DOI PMID

64
Windmueller H G, Spaeth A E (1974). Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem, 249(16): 5070–5079

PMID

65
Wordinger R J, Kell J A (1978). Elevated glucose levels influence in vitro hatching, attachment, trophoblast outgrowth and differentiation of the mouse blastocyst. Experientia, 34(7): 881–882

DOI PMID

66
Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol, 6(6): 411–417

DOI PMID

67
Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194): 519–523

DOI PMID

68
Yoon M S, Chen J (2013). Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis. Mol Biol Cell, 24(23): 3754–3763

DOI PMID

69
Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3): 237–241

DOI PMID

70
Zaugg K, Yao Y, Reilly P T, Kannan K, Kiarash R, Mason J, Huang P, Sawyer S K, Fuerth B, Faubert B, Kalliomäki T, Elia A, Luo X, Nadeem V, Bungard D, Yalavarthi S, Growney J D, Wakeham A, Moolani Y, Silvester J, Ten A Y, Bakker W, Tsuchihara K, Berger S L, Hill R P, Jones R G, Tsao M, Robinson M O, Thompson C B, Pan G, Mak T W (2011). Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev, 25(10): 1041–1051

DOI PMID

71
Zhang J, Khvorostov I, Hong J S, Oktay Y, Vergnes L, Nuebel E, Wahjudi P N, Setoguchi K, Wang G, Do A, Jung H J, McCaffery J M, Kurland I J, Reue K, Lee W N, Koehler C M, Teitell M A (2011). UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J, 30(24): 4860–4873

DOI PMID

72
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595

DOI PMID

73
Zhang Z, Xiang D, Wu W S (2014a). Sodium butyrate facilitates reprogramming by derepressing OCT4 transactivity at the promoter of embryonic stem cell-specific miR-302/367 cluster. Cell Reprogram, 16(2): 130–139

DOI PMID

74
Zhang Z N, Chung S K, Xu Z, Xu Y (2014b). Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells, 32(1): 157–165

DOI PMID

75
Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne M C, Tanaka T, Duan E, Fisher S J, Liao J, Chen J, Wang F (2009). mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA, 106(19): 7840–7845

DOI PMID

76
Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau C A, Horwitz M S, Hockenbery D, Ware C, Ruohola-Baker H (2012). HIF1a induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J, 31(9): 2103–2116

DOI PMID

Outlines

/