Metabolism of pluripotent stem cells
Liang Hu, Edward Trope, Qi-Long Ying
Metabolism of pluripotent stem cells
BACKGROUND: Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.
OBJECTIVE: To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.
METHODS: A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”
RESULTS: Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.
CONCLUSION: Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.
metabolism / pluripotent stem cells / pluripotency / epigenetics
[1] |
Adamo A, Barrero M J, Izpisua Belmonte J C (2011). LSD1 and pluripotency: a new player in the network. Cell Cycle, 10(19): 3215–3216
CrossRef
Pubmed
Google scholar
|
[2] |
Agathocleous M, Harris W A (2013). Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol, 23(10): 484–492
CrossRef
Pubmed
Google scholar
|
[3] |
Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P (2004). Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem, 279(7): 5288–5297
CrossRef
Pubmed
Google scholar
|
[4] |
Bigarella C L, Liang R, Ghaffari S (2014). Stem cells and the impact of ROS signaling. Development, 141(22): 4206–4218
CrossRef
Pubmed
Google scholar
|
[5] |
Blaschke K, Ebata K T, Karimi M M, Zepeda-Martínez J A, Goyal P, Mahapatra S, Tam A, Laird D J, Hirst M, Rao A, Lorincz M C, Ramalho-Santos M (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 500(7461): 222–226
CrossRef
Pubmed
Google scholar
|
[6] |
Brinster R L, Troike D E (1979). Requirements for blastocyst development in vitro. J Anim Sci, 49(Suppl 2): 26–34
Pubmed
|
[7] |
Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150): 191–195
CrossRef
Pubmed
Google scholar
|
[8] |
Cao Y, Guo W T, Tian S, He X, Wang X W, Liu X, Gu K L, Ma X, Huang D, Hu L, Cai Y, Zhang H, Wang Y, Gao P (2015). miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J, 34(5): 609–623
CrossRef
Pubmed
Google scholar
|
[9] |
Carey B W, Finley L W, Cross J R, Allis C D, Thompson C B (2015). Intracellular a-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539): 413–416
CrossRef
Pubmed
Google scholar
|
[10] |
Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, Wang X, Hu X, Gu T, Zhou Z, Liu J, Liu J, Wu H, Mao S Q, Mo K, Li Y, Lai K, Qi J, Yao H, Pan G, Xu G L, Pei D (2013). Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet, 45(12): 1504–1509
CrossRef
Pubmed
Google scholar
|
[11] |
Cho Y M, Kwon S, Pak Y K, Seol H W, Choi Y M, Park D J, Park K S, Lee H K (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun, 348(4): 1472–1478
CrossRef
Pubmed
Google scholar
|
[12] |
Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A, De Cesare D, De Falco S, Angelini C, Scita G, Patriarca E J, Matarazzo M R, Minchiotti G (2013). L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep, 1(4): 307–321
CrossRef
Pubmed
Google scholar
|
[13] |
De Bonis M L, Ortega S, Blasco M A (2014). SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Rep, 2(5): 690–706
CrossRef
Pubmed
Google scholar
|
[14] |
De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch H G, Lensch M W, Lujan E, Pei D, Rossant J, Wernig M, Park P J, Daley G Q (2015). Hallmarks of pluripotency. Nature, 525(7570): 469–478
CrossRef
Pubmed
Google scholar
|
[15] |
Dunning K R, Cashman K, Russell D L, Thompson J G, Norman R J, Robker R L (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod, 83(6): 909–918
CrossRef
Pubmed
Google scholar
|
[16] |
Eagle H (1959). Amino acid metabolism in mammalian cell cultures. Science, 130(3373): 432–437
CrossRef
Pubmed
Google scholar
|
[17] |
Eagle H, Oyama V I, Levy M, Horton C L, Fleischman R (1956). The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J Biol Chem, 218(2): 607–616
Pubmed
|
[18] |
Edgar A J (2002). The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet, 3(1): 18
CrossRef
Pubmed
Google scholar
|
[19] |
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
CrossRef
Pubmed
Google scholar
|
[20] |
Folmes C D, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
CrossRef
Pubmed
Google scholar
|
[21] |
Forristal C E, Christensen D R, Chinnery F E, Petruzzelli R, Parry K L, Sanchez-Elsner T, Houghton F D (2013). Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells. PLoS ONE, 8(5): e62507
CrossRef
Pubmed
Google scholar
|
[22] |
Garcia-Gonzalo F R, Izpisúa Belmonte J C (2008). Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE, 3(1): e1384
CrossRef
Pubmed
Google scholar
|
[23] |
Haberland M, Montgomery R L, Olson E N (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 10(1): 32–42
CrossRef
Pubmed
Google scholar
|
[24] |
Han C, Gu H, Wang J, Lu W, Mei Y, Wu M (2013). Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells, 31(5): 953–965
CrossRef
Pubmed
Google scholar
|
[25] |
Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[26] |
Hart G W (2014). Three Decades of Research on O-GlcNAcylation- A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne), 5: 183
CrossRef
Pubmed
Google scholar
|
[27] |
Hart G W, Slawson C, Ramirez-Correa G, Lagerlof O (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem, 80(1): 825–858
CrossRef
Pubmed
Google scholar
|
[28] |
Hay N, Sonenberg N (2004). Upstream and downstream of mTOR. Genes Dev, 18(16): 1926–1945
CrossRef
Pubmed
Google scholar
|
[29] |
Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012). FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun, 3: 758
CrossRef
Pubmed
Google scholar
|
[30] |
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
CrossRef
Pubmed
Google scholar
|
[31] |
Jang H, Kim T W, Yoon S, Choi S Y, Kang T W, Kim S Y, Kwon Y W, Cho E J, Youn H D (2012). O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell, 11(1): 62–74
CrossRef
Pubmed
Google scholar
|
[32] |
Kang J X, Wan J B, He C (2014). Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells, 32(5): 1092–1098
CrossRef
Pubmed
Google scholar
|
[33] |
Kim H, Jang H, Kim T W, Kang B H, Lee S E, Jeon Y K, Chung D H, Choi J, Shin J, Cho E J, Youn H D (2015). Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 33(9): 2699–2711
CrossRef
Pubmed
Google scholar
|
[34] |
Kim H, Wu J, Ye S, Tai C I, Zhou X, Yan H, Li P, Pera M, Ying Q L (2013). Modulation of b-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun, 4: 2403
CrossRef
Pubmed
Google scholar
|
[35] |
Kim J, Chu J, Shen X, Wang J, Orkin S H (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049–1061
CrossRef
Pubmed
Google scholar
|
[36] |
Klose R J, Zhang Y (2007). Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 8(4): 307–318
CrossRef
Pubmed
Google scholar
|
[37] |
Kobayashi H, Kikyo N (2015). Epigenetic regulation of open chromatin in pluripotent stem cells. Transl Res, 165(1): 18–27
CrossRef
Pubmed
Google scholar
|
[38] |
Lane A N, Fan T W (2015). Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res, 43(4): 2466–2485
CrossRef
Pubmed
Google scholar
|
[39] |
Lunt S Y, Vander Heiden M G (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 27(1): 441–464
CrossRef
Pubmed
Google scholar
|
[40] |
Mali P, Chou B K, Yen J, Ye Z, Zou J, Dowey S, Brodsky R A, Ohm J E, Yu W, Baylin S B, Yusa K, Bradley A, Meyers D J, Mukherjee C, Cole P A, Cheng L (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28(4): 713–720
CrossRef
Pubmed
Google scholar
|
[41] |
Mandal S, Lindgren A G, Srivastava A S, Clark A T, Banerjee U (2011). Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells, 29(3): 486–495
CrossRef
Pubmed
Google scholar
|
[42] |
Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, Kuppusamy K T, Moon R T, Ruohola-Baker H (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell, 14(5): 592–605
CrossRef
Pubmed
Google scholar
|
[43] |
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab, 21(3): 392–402
CrossRef
Pubmed
Google scholar
|
[44] |
Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Izpisua Belmonte J C (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 22(1): 168–177
CrossRef
Pubmed
Google scholar
|
[45] |
Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28(4): 721–733
CrossRef
Pubmed
Google scholar
|
[46] |
Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker E E, Ralser M, Cramer T, Adjaye J (2014). HIF1a modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells, 32(2): 364–376
CrossRef
Pubmed
Google scholar
|
[47] |
Ryu J M, Han H J (2011). L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem, 286(27): 23667–23678
CrossRef
Pubmed
Google scholar
|
[48] |
Ryu J M, Lee H J, Jung Y H, Lee K H, Kim D I, Kim J Y, Ko S H, Choi G E, Chai I I, Song E J, Oh J Y, Lee S J, Han H J (2015). Regulation of Stem Cell Fate by ROS-mediated Alteration of Metabolism. Int J Stem Cells, 8(1): 24–35
CrossRef
Pubmed
Google scholar
|
[49] |
Segev H, Fishman B, Schulman R, Itskovitz-Eldor J (2012). The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment. Stem Cells Dev, 21(10): 1653–1661
CrossRef
Pubmed
Google scholar
|
[50] |
Sharma A, Diecke S, Zhang W Y, Lan F, He C, Mordwinkin N M, Chua K F, Wu J C (2013). The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem, 288(25): 18439–18447
CrossRef
Pubmed
Google scholar
|
[51] |
Shin J H, Zhang L, Murillo-Sauca O, Kim J, Kohrt H E, Bui J D, Sunwoo J B (2013). Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci USA, 110(30): 12391–12396
CrossRef
Pubmed
Google scholar
|
[52] |
Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab, 19(5): 780–794
CrossRef
Pubmed
Google scholar
|
[53] |
Shyh-Chang N, Daley G Q (2015). Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metab, 21(3): 349–350
CrossRef
Pubmed
Google scholar
|
[54] |
Shyh-Chang N, Locasale J W, Lyssiotis C A, Zheng Y, Teo R Y, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer J J, Zhu H, Asara J M, Daley G Q, Cantley L C (2013). Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science, 339(6116): 222–226
CrossRef
Pubmed
Google scholar
|
[55] |
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer K A, Devi A, Detraux D, Gu H, Battle S L, Showalter M, Valensisi C, Bielas J H, Ericson N G, Margaretha L, Robitaille A M, Margineantu D, Fiehn O, Hockenbery D, Blau C A, Raftery D, Margolin A A, Hawkins R D, Moon R T, Ware C B, Ruohola-Baker H (2015). The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol, 17(12): 1523–1535
CrossRef
Pubmed
Google scholar
|
[56] |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
CrossRef
Pubmed
Google scholar
|
[57] |
Takehara T, Teramura T, Onodera Y, Hamanishi C, Fukuda K (2012). Reduced oxygen concentration enhances conversion of embryonic stem cells to epiblast stem cells. Stem Cells Dev, 21(8): 1239–1249
CrossRef
Pubmed
Google scholar
|
[58] |
Thomson J A, Odorico J S (2000). Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol, 18(2): 53–57
CrossRef
Pubmed
Google scholar
|
[59] |
Trounson A O, Leeton J F, Wood C, Webb J, Wood J (1981). Pregnancies in humans by fertilization in vitro and embryo transfer in the controlled ovulatory cycle. Science, 212(4495): 681–682
CrossRef
Pubmed
Google scholar
|
[60] |
Vozza A, Parisi G, De Leonardis F, Lasorsa F M, Castegna A, Amorese D, Marmo R, Calcagnile V M, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014). UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA, 111(3): 960–965
CrossRef
Pubmed
Google scholar
|
[61] |
Wang J, Alexander P, McKnight S L (2011). Metabolic specialization of mouse embryonic stem cells. Cold Spring Harb Symp Quant Biol, 76(0): 183–193
CrossRef
Pubmed
Google scholar
|
[62] |
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939): 435–439
CrossRef
Pubmed
Google scholar
|
[63] |
Washington J M, Rathjen J, Felquer F, Lonic A, Bettess M D, Hamra N, Semendric L, Tan B S, Lake J A, Keough R A, Morris M B, Rathjen P D (2010). L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol, 298(5): C982–C992
CrossRef
Pubmed
Google scholar
|
[64] |
Windmueller H G, Spaeth A E (1974). Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem, 249(16): 5070–5079
Pubmed
|
[65] |
Wordinger R J, Kell J A (1978). Elevated glucose levels influence in vitro hatching, attachment, trophoblast outgrowth and differentiation of the mouse blastocyst. Experientia, 34(7): 881–882
CrossRef
Pubmed
Google scholar
|
[66] |
Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol, 6(6): 411–417
CrossRef
Pubmed
Google scholar
|
[67] |
Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194): 519–523
CrossRef
Pubmed
Google scholar
|
[68] |
Yoon M S, Chen J (2013). Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis. Mol Biol Cell, 24(23): 3754–3763
CrossRef
Pubmed
Google scholar
|
[69] |
Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3): 237–241
CrossRef
Pubmed
Google scholar
|
[70] |
Zaugg K, Yao Y, Reilly P T, Kannan K, Kiarash R, Mason J, Huang P, Sawyer S K, Fuerth B, Faubert B, Kalliomäki T, Elia A, Luo X, Nadeem V, Bungard D, Yalavarthi S, Growney J D, Wakeham A, Moolani Y, Silvester J, Ten A Y, Bakker W, Tsuchihara K, Berger S L, Hill R P, Jones R G, Tsao M, Robinson M O, Thompson C B, Pan G, Mak T W (2011). Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev, 25(10): 1041–1051
CrossRef
Pubmed
Google scholar
|
[71] |
Zhang J, Khvorostov I, Hong J S, Oktay Y, Vergnes L, Nuebel E, Wahjudi P N, Setoguchi K, Wang G, Do A, Jung H J, McCaffery J M, Kurland I J, Reue K, Lee W N, Koehler C M, Teitell M A (2011). UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J, 30(24): 4860–4873
CrossRef
Pubmed
Google scholar
|
[72] |
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595
CrossRef
Pubmed
Google scholar
|
[73] |
Zhang Z, Xiang D, Wu W S (2014a). Sodium butyrate facilitates reprogramming by derepressing OCT4 transactivity at the promoter of embryonic stem cell-specific miR-302/367 cluster. Cell Reprogram, 16(2): 130–139
CrossRef
Pubmed
Google scholar
|
[74] |
Zhang Z N, Chung S K, Xu Z, Xu Y (2014b). Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells, 32(1): 157–165
CrossRef
Pubmed
Google scholar
|
[75] |
Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne M C, Tanaka T, Duan E, Fisher S J, Liao J, Chen J, Wang F (2009). mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA, 106(19): 7840–7845
CrossRef
Pubmed
Google scholar
|
[76] |
Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau C A, Horwitz M S, Hockenbery D, Ware C, Ruohola-Baker H (2012). HIF1a induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J, 31(9): 2103–2116
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |